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Introduction to Statics
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1.1 Basic Concepts

In this section, we roughly explain the basic technical terms that will be used
throughout the course.

• Space is the region occupied by the bodies. We set up an coordinate
system to specify where the object is by the position and its posture by the
orientation.

• Time is the measure of the succession of events. Often, we are more inter-
ested in the change of physical quantities with respect to time, e.g. v = dr

dt
,

instead of time variable itself.

• Force —a fixed vector— is the measure of the attempt to move a body.

• Particle is a body of which its dimension is negligible. The rotation effect
is insignificant because it is just a point. Whether the body can be treated
as the particle or not depends on the relative dimensions in the problem
and how much detailed of the solution we are interested in.

• Rigid body is a body whose relative movement between its parts are
negligible relative to the gross motion of the body. For example the motion
of an ingot can be analyzed by assuming the object being rigid.

• Nonrigid body is a body whose relative movement between its parts are
significant relative to the gross motion of the body. Knowledge of the
mechanics of the deformable material must be used along with Dynamics
in order to determine the absolute motion of the nonrigid bodies.

Let us consider some examples to see the difference of each term. If we have
an object and consider the very small substance of the body. For differential
element analysis of the body, the small substance can be treated as a particle.
However, the substance must be handled as connecting objects had the molecular
effects in the body are of concern. Or think of an airplane. Even of its huge size,
the whole airplane may be modeled as a point in flight speed analysis along the
route. But if the rotational motion, such as yawing or pitching, of the airplane
body is important, its size does matter.

The next two examples are to show whether an object is considered rigid or
nonrigid depends on how much detailed of the problem we would like to analyze.
Truss can just be looked as a rigid body for the preliminary design of truss
structure. But we must think of the truss elasticity if we were to choose the
material for that truss. A stiff linkage of the robot may be considered a rigid
body. However, the n-connecting linkages, treated as a whole, to form the robot
arm is an example of nonrigid body. Note the body-fixed inertia of the nonrigid
body is not constant.
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1.2 Scalars and Vectors

In this section, we describe the scalar and vector quantities. Particularly, the vec-
tor term is explained more in length because it is fundamental to many dynamical
variables.

• Scalars are quantities for which only the magnitude can describe com-
pletely. Time, volume, density, speed, energy, and mass are some examples.

• Vectors are quantities for which both the magnitude and the direction
are needed to completely describe. Examples are displacement, velocity,
acceleration, force, moment, and momentum. Vectors cand be classified
into 3 types: free vector, sliding vector, and fixed vector.

• Free Vector is a vector whose action is not confined with a unique line in
space. That is, only its magnitude and direction do matter. Some examples
are the displacement vector of a pure translational rigid object, or the couple
vector of a rigid body. Free vector is free to slide and translate as long as its
direction and magnitude are maintained. In other words, its line of action
and point of application do not matter.

• Sliding Vector is a vector whose line of action must be specified in ad-
dition to its magnitude and direction. External force or moment acting
on the rigid body falls under this category. Therefore sliding vector has a
freedom to slide along the fixed line of action.

• Fixed Vector is a vector whose magnitude, direction, line of action, and
point of application are all important in the analysis. External force or
moment acting onto the nonrigid body must be dealt with as the fixed
vector due to the deformable effect of the object.

1.2.1 Representation of Vectors

There are many notations to represent a vector quantity, i.e. v, v̄, ~v, or v. If we
would like to tell only the magnitude, |v| or v may be used. Keep in mind that
the complete representation of a vector must be able to determine its magnitude,
direction, line of action, and point of application. See Fig. 1.1.

1.2.2 Vector Manipulation

There are several ways which involve many procedures in adding two vector quan-
tities, v = v1 + v2. See Fig. 1.2. First we have two arbitrary vectors, v1 and v2.
By graphical approach, which is the clearest illustration, we use the principle of
transmissibility to move each vector along its line of action so that their origin
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Figure 1.1: Magnitude, direction, line of action, and point of application of a
vector ([1], pp. 5)

Figure 1.2: Parallelogram law and Head to tail for vector addition ([1], pp. 6)

points coincide. Then parallelogram law is applied to find the resultant vector,
v. Vectors can also be added up using the head to tail, as done in the last figure.
However, in contrary to the parallelogram method, the head to tail method does
not guarantee correct line of action of the resultant vector. It may be obtained
separately with the help of the principle of moment. Neither method gives the
correct point of application. In summary, only the magnitude and direction of
the resultant vector are ensured. If one choose the parallelogram law, the correct
line of action can be obtained as well.

Some familiar algebraic laws also hold for the vector addition operation. They
are

• Commutative Law The order of vectors in addition operation does not
matter. v1 + v2 = v2 + v1.

• Associative Law The order of vectors in addition operation does not
matter. (v1 + v2) + v3 = v1 + (v2 + v3).

• Vector Subtraction The subtraction is the addition of the negative of the
vector. v1 − v2 = v1 + (−v2).

In the algebraic approach, cosine law and sine law are used in determining the
magnitude and direction of the resultant vector from the addition of two vectors,
as shown in Fig. 1.3. The resultant vector, drawn in red, is one side of the triangle
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Figure 1.3: Determination of the magnitude and direction of the resultant vector

Figure 1.4: Vector components along different coordinate systems ([1], pp. 6)

forming from the other two vectors, v1 and v2. The magnitude, i.e. the length,
of the resultant vector v is found by the cosine law:

v2 = v2
1 + v2

2 − 2v1v2 cos β (1.1)

And the direction can be determined from the sine law and pruning the impossible
solution:

v

sin β
=

v2

sin θ
(1.2)

1.2.3 Coordinate Systems

Coordinate systems are used to describe systematically the vectors. Different
coordinate systems can be defined and used to solve the same problem because
the vector quantities are invariant to the coordinate systems. However, some of
them will be more appropriate to the problem at hand than others.

Usually we get used to the coordinate systems of which their coordinate axes
are perpendicular. They are called rectangular coordinate systems. In some
situation, non-rectangular coordinate system may be needed.

After we set up the coordinate system, the vector can be described by its
components along the coordinate axis directions. As seen in Fig. 1.4, the same
vector v can be described in many ways depending on the coordinate system
used.

v = v1 + v2 = vx + vy = vx′ + vy′

Also, it can be seen that the vector components can be found by the use of
parallelogram law. Vector components are the adjacent sides of the parallelo-
gram. Therefore, cosine and sine laws can be used to determine the components.

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/vec_algebraic_addition.eps
./figs/vec_components.eps


1.2 Scalars and Vectors 6

Figure 1.5: 2-D rectangular coordinate system

In case of rectangular coordinate system, vector components are determined sim-
ply by the dot product of the vector with unit vector along those axes. In other
words, the components of the vector associated with the given rectangular coor-
dinate system are the orthogonal projection of the vector onto the corresponding
coordinate axes.

1.2.4 2-D Rectangular Coordinate System

We focus on the basic relationship of the vector and its components in 2-D rect-
angular coordinate system, shown in Fig 1.5. The components in this special case
is the orthogonal projection of the vector onto the corresponding coordinate axes,
which can be calculated from the dot product of the vector with the respective
unit vector.

vx = v · i = v cos θ (1.3)

vy = v · j = v sin θ (1.4)

1.2.5 3-D Rectangular Coordinate System

Let us now focus on the basic relationship of the vector and its components in
3-D rectangular coordinate system, shown in Fig. 1.6. The components in this
special case is the orthogonal projection of the vector onto the corresponding
coordinate axes, which can be calculated from the dot product of the vector with
the respective unit vector.

vx = v · i = v cos θx (1.5)

vy = v · j = v cos θy (1.6)

vz = v · k = v cos θz (1.7)

cos θx, cos θy, and cos θz are called the direction cosine of the vector since they
give information of the vector direction. Because the coordinate system used is
rectangular, it follows that

cos2 θx + cos2 θy + cos2 θz = 1 (1.8)
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Figure 1.6: 3-D rectangular coordinate system

It can be concluded from the equation that the three angles are dependent. Only
two of them are enough to specify the orientation of the vector.

1.3 Newton’s Laws

In this section, we briefly mention the Newton’s laws that describe the motion of
the particle under low velocity. The first law states:

“A particle remains at rest or continue to move in a straight line with
a uniform velocity if there is no unbalanced force acting on it.”

This statement can be formulated as

ΣF = 0⇔ a = 0

Newton’s second law, the most well-known of three, states:

“The absolute acceleration of a particle is proportional to the resultant
force acting on it and is in the direction of this resultant force.”

This statement can be formulated as

ΣF = ma (1.9)

where a = absolute acceleration of the particle.

Newton’s third law states:

“The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear.”

It can be nmemonically written as

action force = − (reaction force)

This fact is used very often in drawing the free body diagram (FBD). See Fig. 1.7.
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Figure 1.7: Newton’s third law

Figure 1.8: Gravitational force

1.4 Gravitational Law

Any two bodies have the attraction force governed by the gravitational law
(Fig. 1.8):

F = G
m1m2

r2
(1.10)

where

F = attraction force

G = gravitational constant value = 6.673× 10−11 m3/
(

kg · s2
)

m = mass of the involving bodies

r = distance between the bodies

Hence there is always the attraction force between the earth and the object.
This gravitational force is called the weight of the body.

W = m
Gme

r2
= mg (1.11)

where

g = free falling acceleration observed on the moving earth

= 9.81 m/s2

In practice, however, the gravitational acceleration can be considered the abso-
lute acceleration for the engineering problem on earth.
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Force Systems
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2.1 Overview of Forces

This chapter explain the force systems in 2-D and 3-D. The rectangular coordi-
nate system is set up as a mean to describe the force system. Force and their
consequences, moment and couple, can then be described using the defined coor-
dinate system. Finally, resultant force system will be determined as the simplest
representation of the complex system of forces, moments, and couples.

In this section, we roughly explain the concepts and basic terminologies in-
volving with force.

• Force is the measure of the attempt to move a body. It is a fixed vector.
For the rigid body problems, or if only the external effects of the external
force onto the objects are of interested, that force can be treated as a sliding
vector. Hence the problem can make use of the principle of transmissibility.
Specification of the magnitude, direction, and line of action can completely
describe the force vector.

Figure 2.1 illustrates the use of the principle of transmissibility. If the
body is rigid (enough), the force pushing at point A will generate the same
resulting motion as the force pulling the object at point B.

• Contact force vs. Body force Contact force occurs from the contact
between the bodies, which is very common since the phenomena can be
easily observed. However, there is force between the bodies even though
they are not in contact. It is the attracting force, or body force, trying to pull
the bodies together, of which its magnitude is governed by the gravitational
law.

• Concentrated force vs. Distributed force Most of the forces are nat-
urally the distributed force, which means the force acts over some area or
surface such as the force developed between the tire and the road. Con-
centrated force is the ideal situation that the surface or volume where the
force acts on is negligible. This simplifies the situation and makes possible
the preliminary analysis of the problem. In some circumstances, where the
body can be assumed rigid, the distributed force can be reduced to a single
resultant force. In other words, we find the equivalent concentrated force
to the original distributed force system.

• Force measurement Force sensor is used to measure the force. Its prin-
ciple is to infer the force from the deformation of an elastic element. Cali-
bration of the force sensor to the known load is necessary.

• Action vs. Reaction force They are pair of forces expressing the inter-
action between bodies. They will be revealed when isolate the surrounding
objects from the system of interest. Free body diagram (FBD) is used to
help indentify the action and reaction forces.
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Figure 2.1: For rigid body, the force can be moved along the line of action and
the effect is unchanged

• Combining force We use the parallelogram law or the principle of mo-
ment, in addition to the conventional vector addition, to combine system
of forces. The line of action of the combined force will be corrected.

• Force components Determining the force components along the specified
coordinate system is the reverse procedure of combining the forces. Again,
the parallelogram law or the principle of moment, including the principle
of transmissibility are used to obtain the correct force components.

• Orthogonal projection is the perpendicular projection along the specified
direction. It is calculated by the dot product of the vector and the unit
vector in that direction. The components of a vector, however, are usually
not the same as the orthogonal projection onto the same coordinate system.
Exception is the orthogonal (rectangular) coordinate system. Figure 2.2
depicts the distiction. With the parallelogram law, sum of the components
must equal to the original vector.

• Addition of parallel forces by the graphical method has the problem that
the line of action of the resulting force cannot be determined as usual by
the principle of transmissibility and the parallelogram law because the line
of actions do not intersect. The trick is to make them intersect by adding
an arbitrary force vector to one of the original force, and then subtracting
the opposite from the other one of the original force. The new pair of forces
is now unparalleled and can be added up to get the resultant force with
the location of the line of action. Figure 2.3 shows the steps of the parallel
forces addition.

2.2 2-D Rectangular Coordinate Systems

Figure 2.4 shows the force vector and its rectangular components. If a 2-D rect-
angular coordinate system has been specified, a planar force vector, F, can be
written as the addition of its component vectors along the coordinate axes.
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Figure 2.2: Components vs. orthogonal projection of a vector onto the same
coordinate system

Figure 2.3: Parallel force addition

Figure 2.4: Planar force vector and its rectangular components

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/component_vs_projection.eps
./figs/add_parallel_force.eps
./figs/2D_force_component.eps


2.2 2-D Rectangular Coordinate Systems 13

Figure 2.5: Example 2.1 ([2], pp. 29)

Figure 2.6: Solution to example 2.1

F = Fx + Fy = Fxi + Fyj (2.1)

The components are the orthogonal projection of the vector onto the respective
axes which are determined by the dot product of the vector and the unit vector
along the axes.

Fx = F · i = F cos θ
Fy = F · j = F sin θ

(2.2)

The magnitude and direction of the force vector F follow immediately as

F =
√

F 2
x + F 2

y (2.3)

θ = arctan2 (Fy, Fx) (2.4)

Example 2.1 ([2], Prob. 2/9) If the two equal tension T in the pulley cable
together produce a force of 5 kN on the pulley bearing, calculate T.

Solution: Use the parallelogram law and the cosine law to determine the
non-orthogonal components. From the force vector addition and by the cosine
law,

52 = T 2 + T 2 + 2T × T cos 60◦

T = 2.89 kN
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Figure 2.7: Example 2.2 ([2], pp. 30)

Figure 2.8: Solution to example 2.2

Example 2.2 ([2], Prob. 2/11) While steadily pushing the machine up an
incline, a person exerts a 180 N force P as shown. Determine the components of
P which are parallel and perpendicular to the incline.

Solution: Draw the coordinate axes and the force vector. Carefully indi-
cate the angles. Then project the force to the respective axes.

Pt = 180 cos (10 + 15) = 163.1 N
Pn = −180 sin (10 + 15) = −76.1 N

Example 2.3 ([2], Prob. 2/19) Determine the resultant R of the two forces
applied to the bracket. Write R in terms of unit vectors along the x- and y- axes
shown.

Solution: Draw the coordinate axes and the force vectors. Carefully indi-
cate the angles. After that, project the forces to the respective axes. Then
algebraically add the components that are on the same axis to obtain the answer.
The problem is extended to determine the components along the non-orthogonal
coordinate system.

Force components along the x-y coordinate system are

Rx = 200 cos (15 + 20)− 150 sin (10 + 20) = 88.8 N
Ry = 200 sin (15 + 20) + 150 cos (10 + 20) = 244.6 N
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Figure 2.9: Example 2.3 ([2], pp. 32)

Figure 2.10: Solution to example 2.3

Force components along the x′-y′ coordinate system are

Rx′ = 200 cos 15− 150 sin 10 = 167.1 N
Ry′ = 200 sin 15 + 150 cos 10 = 199.5 N

Hence the resultant R is

R = 88.8i + 244.6j N = 167.1i′ + 199.5j′ N

Force components along the non-orthogonal x′-y coordinate system are deter-
mined by law of sine and cosine:

200 N =⇒ 174.34i′ + 55.1j N and 150 N =⇒ −79.8i′ + 157.2j N

R = (174.34− 79.8) i′ + (55.1 + 157.2) j = 94.54i′ + 212.3j N

Example 2.4 ([1], Prob. 2/20) It is desired to remove the spike from the timber
by applying force along its horizontal axis. An obstruction A prevents direct
access, so that two forces, one 1.6 kN and the other P, are applied by cables as
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Figure 2.11: Example and solution of 2.4 ([1], pp. 36)

shown. Compute the magnitude of P necessary to ensure axial tension P along
the spike. Also find T.

Solution: To remove the spike, the efforted force must point in the direc-
tion along the spike axis. This means there is no net force in the perpendicular
direction. P and 1.6 kN must add up to give the resultant force in the horizontal
direction.

Because there is no net force in the y- direction, the summation of force is

Ry = P sin

(

atan

(

100

200

))

− 1.6 sin

(

atan

(

150

200

))

= 0

Therefore,
P = 2.15 kN

The axial tension is the total force along the x- direction.

T = Rx = P cos

(

atan

(

100

200

))

+ 1.6 cos

(

atan

(

150

200

))

= 3.20 kN

Example 2.5 ([1], Prob. 2/26) As it inserts the small cylindrical part into
a close fitting circular hole, the robot arm exerts a 90 N force P on the part
parallel to the axis of the hole as shown. Determine the components of the force
which the part exerts on the robot along axes (a) parallel and perpendicular to
the arm AB, and (b) parallel and perpendicular to the arm BC.

Solution: The indicated force P is the force done by the robot on the
cylindrical part. Therefore the force exerted by the part on the robot is −P. We
set up the coordinate frame n1t1 and n2t2 where their axes are perpendicular
and parallel to the link AB and BC, respectively. Then −P is projected onto
these rectangular coordinate system.

Force done by the part on the robot written in n1t1 frame is

−P = −90 cos 45n1 + 90 sin 45t1 = −63.6n1 + 63.6t1 N
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Figure 2.12: Example 2.5 ([1], pp. 37)

Figure 2.13: Solution to example 2.5

Force done by the part on the robot written in n2t2 frame is

−P = −90 cos 60n2 + 90 sin 60t2 = 45n2 + 77.9t2 N

2.3 2-D Force, Moment, and Couple

Moment is the measure of the attempt to rotate a body, which is usually induced
by force. The moment is always associated with a specified point, meaning that
we must specify the point in determining the moment about that point. In 2-D
problems, the moment vector’s direction is always perpendicular to the plane
established by the point and the line of action of the force. In this course, the
moment can be treated as a sliding vector so the problem can make use of the
principle of transmissibility.

Moment of the force F about point A, fig. 2.14, is

MA = r× F (2.5)
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Figure 2.14: Moment MA of F about point A

where r is the position vector from A to any point along the line of action of F.
If only the magnitude is considered, the formula can be written as

MA = F · r (sin α) = F · d (2.6)

where d is the perpendicular distance from the line of action to point A.
In 2-D problems, the moment vector always points perpendicular to the

plane. Therefore, it can also be specified by the magnitude and the sense of
rotation about the point. It does not matter in which direction we will assign
positive value. However, the sign consistency throughout the problem must be
kept.

Varignon’s Theorem, or the Principle of Moment, states that

“The moment of a force about any point is equal to the sum of the
moments of the components of the force about the same point”

Figure 2.15 illustrates the principle. Mathematically, if F = P + Q,

(MA)F = r× F = r× (P + Q) = (MA)P + (MA)Q (2.7)

This theorem is helpful in determining the moment of the force from its com-
ponents. In many cases, moments of some components may be trivial to calculate.

Couple is the measure of the attempt to purely rotate a body. It can be
produced by two equal, opposite, and non-collinear forces. Calculation of the
couple is depicted in fig. 2.16.

M = rA × F + rB × (−F) = r× F (2.8)

M = F · r (sin α) = Fd (2.9)

The couple vector’s direction is perpendicular to the plane established by those
two lines of action of the forces. It is a free vector and so no moment center.
Only the magnitude and direction are enough to describe the couple.
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Figure 2.15: Principle of moment

Figure 2.16: Two dimensional couple
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Figure 2.17: Couple generated by equal and opposite pair of forces

Figure 2.18: Example and solution of 2.6 ([1], pp. 44)

For rigid body, several pairs of equal and opposite forces can give the same
couple. Therefore it is unique to calculate the couple from a given pair of forces
but it is non-unique to determine the pair of forces which will produce that value
of couple. See fig. 2.17. This property can be applied in determining the effect
of the couple from the equivalent pair of forces. Effect from some specific pair of
forces may be trivial to calculate.

Example 2.6 ([1], Prob. 2/36) Calculate the moment of the 250 N force on the
handle of the monkey wrench about the center of the bolt.

Solution: There are many ways in determining the answer. The most
suitable way, however, is to factor the force into components where the moments
can be found easily. Varignon’s theorem is then used in calculating the desired
moment from the sum of moments of their components.

Project 250 N force into x-y coordinate frame and sum the moments induced
by these components about the center of the bolt.

MO = −250 cos 15× 0.2 + 250 sin 15× 0.03 = 46.4 Nm CW

Example 2.7 Calculate the moment of the 240 N force on the handle of the
prong about the instantaneous supporting point O.

Solution: Here we illustrate the moment calculation by the vector approach. r
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Figure 2.19: Example and solution of 2.7

and F are described as vectors according to the coordinate system. The moment
can then be calculated directly as MO = r× F.

r = 0.03i + 0.35j m

F = 240 cos 10i− 240 sin 10j N

MO = r× F = −84.0k Nm

Example 2.8 ([1], Prob. 2/46) The force exerted by the plunger of cylinder
AB on the door is 40 N directed along the line AB, and this force tends to
keep the door closed. Compute the moment of this force about the hinge
O. What force FC normal to the plane of the door must the door stop at C
exert on the door so that the combined moment about O of the two forces is zero?

Solution: Hydraulic force is decomposed into horizontal and vertical direc-
tion, which is used in determining its moment about point O. Force FC at the
stopper to balance the moment can be easily calculated.

The angle which 40 N force made to the horizontal direction is

θ = atan (100/400) = 0.245 rad

Hence the moment of the hydraulic force about point O is

MO = −40 cos θ × 0.075− 40 sin θ × 0.425 = 7.03 Nm CW
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Figure 2.20: Example 2.8 ([1], pp. 47)

Figure 2.21: Solution to example 2.8

The force FC must balance this moment. Therefore

FC = MO/0.825 = 8.53 N

Example 2.9 ([1], Prob. 2/52) While inserting a cylindrical part into the
circular hole, the robot exerts the 90 N force on the part as shown. Determine
the moment about point A, B, and C of the force which the part exerts on the
robot.

Solution: The coordinate system is first set up. MC is determined readily.
MB and MA are then determined by adding the extra moment to MC caused
by the moment of −P at C about B and A respectively. Note the problem asks
the moment of the force which the part exerts on the robot, that is the moment
of −P.

Force which the part exerts on the robot is

F = −P = −90 sin 15i + 90 cos 15j = −23.29i + 86.93j N

Moment about point C is

MC = 90× 0.15 = 13.5 Nm CCW
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Figure 2.22: Example 2.9 ([1], pp. 48)

Figure 2.23: Solution to example 2.9

From fig. 2.23, the position vector rAC written in x-y coordinate system is

rAC = (0.55 cos 60 + 0.45 cos 45) i+(0.55 sin 60− 0.45 sin 45) j = 0.593i+0.158j m

Hence the moment of −P at C about A is

M−P at C about A
= rAC × F = 55.23 Nm CCW

Therefore moment of the force which the part exerts on the robot about A is

MA = MC + M−P at C about A
= 68.7 Nm CCW

Example 2.10 ([2], Prob. 2/55) As part of a test, the two aircraft engines are
revved up and the propeller pitches are adjusted so as to result in the fore and aft
thrusts shown. What force F must be exerted by the ground on each of the main
braked wheels at A and B to counteract the turning effect of the two propeller
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Figure 2.24: Example and solution of 2.10 ([2], pp. 48)

thrusts? Neglect any effect of the nose wheel C, which is turned 90◦ and unbraked.

Solution: Calculate the couple generated by the thrust forces and equate
it to the one produced by the braked forces. The resultant couple is zero, that is,

MC = 2× 5− F × 3 = 0

F = 3.33 kN

Example 2.11 ([2], Prob. 2/59) A lug wrench is used to tighten a square-head
bolt. If 250 N forces are applied to the wrench as shown, determine the
magnitude F of the equal forces exerted on the four contact points on the 25
mm bolt head so that their external effect on the bolt is equivalent to that of
the two 250 N forces. Assume that the forces are perpendicular to the flats of
the bolt head.

Solution: Calculate the couple generated by the two 250 N forces. Four
forces exerted at the sides of the square-head bolt are such that they give the
negative value to balance the applied couple. The equivalent couple system at
the bolt head is shown in fig. 2.26.

250× 0.7 = 2 (F × 0.025)

F = 3500 N
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Figure 2.25: Example 2.11 ([2], pp. 49)

Figure 2.26: Solution to example 2.11

2.4 2-D Resultants

Force has the direct effect of pushing or pulling the body in the direction of the
force. It has the indirect effect, however, of rotating the body about any axis
except the intersection line to the line of force. Sometimes it is useful to separate
the pushing/pulling and the rotating effect while maintaining the resultant force
and moment. See fig. 2.27.

Force F, alone, in the left figure has the effect of moving point B along the
vector direction. It also tries to rotate the object about point B. However,
force F in the right figure only has the effect of moving point B along the vector
direction. The rotation about point B is accounted by the couple M = Fd, which
can be imagined by adding and subtracting F and −F at point B. Force system

Figure 2.27: Force-Couple system
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Figure 2.28: Force polygon method ([1], pp. 58)

of three figures are equivalent in the sense that they make the rigid body moves
in the same manner. To repeat, force F acting at point A is equivalent to the
force F acting at point B plus the compensated couple M .

Resultant is the simplest force combination which can replace the original
system of forces, moments, and couples without altering the external effect of the
system on the rigid body. Several tools are used in determining the resultant.

Force polygon method, or head to tail of the force vectors, may be
used in determining the resultant force. However, only the magnitude and
direction are ensured. That is, the line of action may be incorrect! Figure 2.28
illustrates the method in determining the resultant of three forces, F1, F2, and
F3.

For the specified rectangular coordinate system,

R = F1 + F2 + F3 =
∑

F

Rx =
∑

Fx, Ry =
∑

Fy, R =

√

(

∑

Fx

)2

+
(

∑

Fy

)2

(2.10)

θ = atan2 (Ry, Rx) (2.11)

Principle of transmissibility and Parallelogram law can be used in
determining the resultant force. This method gives the correct line of action.
Therefore it is the quick and easy way to visualize the resultant but low
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Figure 2.29: Determination of resultant force by the principle of transmissibility
([1], pp. 58)

accuracy. The magnitude, direction, and line of action obtained by this method
are correct. Figure 2.29 shows an example of determining the resultant force by
the principle of transmissiblity and the parallelogram law.

Force-Couple equivalent method is the algebraic approach in deter-
mining the resultant. Compensated couple happens to counter the effect of
moving the force to a new location. This method also gives the correct magni-
tude, direction, and line of action. Following is the guideline in determining the
resultant force.

1. Specify a convenient reference point O.

2. Move all forces so the new lines of action pass through point O. The
new lines are parallel to the original ones. By the force-couple equivalent
method, the couples are generated to preserve the motion effect of the
original force system.

3. Sum forces and couples to R and MO.

4. Locate the correct line of action of the resultant force R. This is done by
applying the inverse of force-couple equivalent method. Force R must be
moved to a new location so that the generated couple cancels the couple
MO. Only the force is left and hence is the resultant force.

The related equations used in this method are

R =
∑

i

Fi (2.12)

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/force_transmissibility.eps


2.4 2-D Resultants 28

Figure 2.30: Step 1 and 2 of the force-couple equivalent method ([1], pp. 59)

Figure 2.31: Step 3 and 4 of the force-couple equivalent method ([1], pp. 59)

to determine the magnitude and direction of the resultant, and

MO =
∑

i

Mi =
∑

i

(Fidi) = Rd (2.13)

which is the principle of moment to determine the line of action.

Example 2.12 ([2], Prob. 2/56) In the design of the lifting hook the action of
the applied force F at the critical section of the hook is a direct pull at B and a
couple. If the magnitude of the couple is 4000 Nm, determine the magnitude of F.

Solution: The moment induced by the resultant force must be equal to
the 4000 Nm couple. Hence the resultant force magnitude can be determined.

F × 0.1 = 4000, F = 40 kN
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Figure 2.32: Example and solution of 2.12 ([2], pp. 49)

Example 2.13 ([2], Prob. 2/61) Calculate the moment of the 1200 N force
about pin A of the bracket. Begin by replacing the 1200 N force by a force-couple
system at point C. Calculate the moment of the 1200 N force about the pin at B.

Solution: Force-couple equivalent system sometimes makes the moment
calculation intuitive. Here, we first determine the force-couple equivalence of
the tension at C. Then we calculate the moment of the new equivalent system
about point A and B.

Moment of 1200 N force about C is

MC = 1200× 0.2 = 240 Nm CCW

Therefore the moment about point A and B are

MA = MC + 1200× 1√
5
× 0.6 = 562 Nm CCW

MB = MA + 1200× 2√
5
× 0.5 = 1099 Nm CCW

Example 2.14 ([1], Prob. 2/70) The combined drive wheels of a front-wheel-
drive automobile are acted on by a 7000 N normal reaction force and a friction
force F, both of which are exerted by the road surface. If it is known that the
resultant of these two forces makes a 15◦ angle with the vertical, determine the
equivalent force-couple system at the car mass center G. Treat this as a 2D
problem.

Solution: First, determine the resultant force of the normal and friction
forces. Since the resultant force makes a 15◦ angle with the vertical,

R cos 15 = 7000, R = 7246.9 N
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Figure 2.33: Example and solution of 2.13 ([2], pp. 50)

Figure 2.34: Example and solution of 2.14 ([1], pp. 56)

Then move the resultant force acting at the front wheel to the car mass center
G. Consequently, the couple must be provided to compensate for the induced
moment of the original force system.

MG = 7000× 1 + 7246.9 sin 15× 0.5 = 7937.8 Nm CW

Example 2.15 ([2], Prob. 2/75) Determine and locate the resultant R of the
two forces and one couple acting on the I-beam.

Solution: We first select an arbitrary point O to which all forces and cou-
ples will be moved to. Then the equivalent force-couple at point O is
determined.

R = 8− 5 = 3 kN downward

MO = 25− 5× 2− 8× 2 = 1 kNm CW

Finally, the resultant force is found by locating the correct line of action. This
step is essentially done by applying the principle of moment.

3d = 1, d = 1/3 m & x = 4
1

3
m
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Figure 2.35: Example and solution of 2.15 ([2], pp. 56)

Figure 2.36: Example and solution of 2.16 ([1], pp. 62)

Example 2.16 ([1], Prob. 2/83) If the resultant of the two forces and couple
M passes through point O, determine M.

Solution: The key to this problem is that the resultant passes through
point O means there is no moment at point O. By summing all moment from
the two forces and one unknown couple M at point O to zero, we can find the
solution.

MO = M − 400× 0.15 cos 30− 320× 0.3 = 0

M = 148 Nm CCW

Example 2.17 ([1], Prob. 2/88) The directions of the two thrust vectors of
an experimental aircraft can be independently changed from the conventional
forward direction within limits. For the thrust configuration shown, determine
the equivalent force-couple system at point O. Then replace this force-couple
system by a single force and specify the point on the x-axis through which the
line of action of this resultant passes.
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Figure 2.37: Example 2.17 ([1], pp. 63)

Figure 2.38: Solution to example 2.17

Solution: The force-couple equivalent system at point O is first determined as
followed.

R = (T + T cos 15) i + (T sin 15) j = 1.966T i + 0.259T j N

MO = T cos 15× 3− T × 3− T sin 15× 10 = 2.69T Nm CW

Then the resultant force is the force located at which its moment about point
O is equal to the couple. Since Rx of the new force system does not contribute
moment about O, only Ry can be used in the calculation. The moment equation
is used to solve for the position of the point through which the line of action of
the resultant passes.

0.259T × x = −2.69T, x = −10.4 m

Example 2.18 ([1], Prob. 2/93) Two integral pulleys are subjected to the belt
tensions shown. If the resultant R of these forces passes through the center O, de-
termine T and the magnitude of R and the CCW angle θ it makes with the x-axis.

Solution: The key to this problem is that the resultant passes through
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Figure 2.39: Example and solution of 2.18 ([1], pp. 64)

point O means there is no moment at point O. By summing all moments at
point O from the tension forces to zero, T can be determined.

(160− T )× 100 + (150− 200)× 200 = 0, T = 60 N

R is obtained by summing the tension forces altogether.

R = (200 + 150− 160 cos 30− 60 cos 30) i + (160 sin 30 + 60 sin 30) j

R = 159.5i + 110j N, R = 193.7 N θ = 34.6◦

Example 2.19 ([1], Prob. 2/97) A rear-wheel-drive car is stuck in the snow
between other park cars as shown. In an attempt to free the car, three students
exert forces on the car at point A, B, and C while the driver’s actions result
in a forward thrust of 200 N acting parallel to the plane of rotation of each
rear wheel. Treating the problem as 2D, determine the equivalent force-couple
system at the car center of mass G and locate the position x of the point on the
car centerline through which the resultant passes. Neglect all forces not shown.

Solution: The resultant force is simply the addition of all forces acting on
the car. Using the given x-y coordinate system,

R = (200 + 400 + 200 + 250 sin 30) i + (250 cos 30 + 350) j = 925i + 566.5j N

It is obvious that the 400 N force in x-direction and the y-component of 250
N cause no moment about G. Therefore the moment at point G is

MG = 350× 1.65 + 250 sin 30× 0.9 = 690 Nm CCW

Note that the x-component of the resultant force does not contribute the
moment about G. Hence only Ry will be used in the moment calculation, from
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Figure 2.40: Example 2.19 ([1], pp. 65)

Figure 2.41: Solution to example 2.19

which the position on the centerline of the car where the resultant passes can be
deduced.

566.5× x = 690, x = 1.218 m

Example 2.20 ([1], Prob. 2/98) An exhaust system for a pickup truck is
shown in the figure. The weights Wh, Wm, and Wt of the headpipe, muffler, and
tailpipe are 10, 100, and 50 N, respectively, and act at the indicated points. If
the exhaust pipe hanger at point A is adjusted so that its tension FA is 50 N,
determine the required forces in the hangers at point B, C, and D so that the
force-couple system at point O is zero. Why is a zero force-couple system at O
desirable.

Solution: The key is that for static, if the force-couple at point O is zero,
the force-couple at any point is zero too! In particular, the moment at point E
is zero. That is

Wh×(0.2 + 1.3 + 0.9)+Wm×(0.65 + 0.9)+Wt×0.4−FA×(1.3 + 0.9)−FB×0.9 = 0

FB = 98.9 N

We use the knowledge that the force components in horizontal and vertical
direction are zero to determine the remaining unknown forces, FC and FD.

FA + FB + FC cos 30 + FD cos 30−Wh −Wm −Wt = 0
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Figure 2.42: Example 2.20 ([1], pp. 65)

FD sin 30− FC sin 30 = 0

FC = FD = 6.415 N

Therefore the pipe is in equilibrium without external reaction force at support
O. The stress at O, which is at the joint, is zero. This effectively prevents the
breakage of the exhaust system.

2.5 3-D Rectangular Coordinate Systems

Figure 2.43 shows the force vector and its rectangular components. If a 3-D
rectangular coordinate system has been specified, a force vector F can be written
as the addition of its component vectors along the coordinate axes.

F = Fx + Fy + Fz = Fxi + Fyj + Fzk (2.14)

The components are the orthogonal projection of the vector onto the respective
axes which are determined by the dot product of the vector and the unit vector
along the axes.

Fx = F · i = F cos θx

Fy = F · j = F cos θy

Fz = F · k = F cos θz

(2.15)

The magnitude and direction of the force vector F follow immediately as

F =
√

F 2
x + F 2

y + F 2
z (2.16)

θx = arccos (Fx, F )
θy = arccos (Fy, F )
θz = arccos (Fz, F )

(2.17)

And the following relationship can be seen directly from the figure;

Fxz = F sin θy

Fxy = F sin θz

Fyz = F sin θx

(2.18)
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Figure 2.43: Force vector and its rectangular components ([1], pp. 66)

We define the directional unit vector, nF to be the unit vector of which its
direction is the same as the vector F:

nF = cos θxi + cos θyj + cos θzk (2.19)

Hence F can also be represented as

F = FnF (2.20)

That is to completely describe the vector, it is necessary to determine the
directional unit vector and the magnitude. In many problems, there are common
situations we would like to determine the direction of the force vector: direction
of force vector by two points or by two angles.

Direction of force vector by two points
If we were given two points, A and B, by which the force vector, F passes,

the directional unit vector, nF, can be calculated as follow. See figure 2.44.

nF =
AB

|AB| =
(x2 − x1) i + (y2 − y1) j + (z2 − z1)k
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

(2.21)

Direction of force vector by two angles
If we were given two angles, θ and φ, which the force vector, F makes with the

x-axis and the projection onto the x-y plane, respectively, nF can be calculated
as follow. See figure 2.45.

nF = (cos φ cos θ) i + (cos φ sin θ) j + (sin φ)k (2.22)
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Figure 2.44: Direction of force vector by two points ([1], pp. 66)

Orthogonal projection
The magnitude of the orthogonal projection of F in the n-direction is deter-

mined by the dot product of F with n. Mathematically,

Fn = F · n = FnF · n = F cos θ (2.23)

where θ is the angle that F made with n. Consequently,

cos θ =
F · n
F

(2.24)

Therefore the orthogonal projection of F onto the n-direction is

Fn = Fnn = (F · n)n (2.25)

See figure 2.46.
It is noted that the orthogonal projection of the force vector may not be

equal to its component. They will be equal only when the rectangular coordinate
system is used.

Example 2.21 ([2], Prob. 2/99) In opening a door which is equipped with a
heavy duty return mechanism, a person exerts a force P of magnitude 32 N as
shown. Force P and the normal n to the face of the door lie in a vertical plane.
Express P as a vector and determine the angles θx, θy, and θz which the line of
action P makes with the positive x-, y-, and z-axes.

Solution: Force P can be described in x-y-z frame by first projecting P
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Figure 2.45: Direction of force vector by two angles ([1], pp. 67)

Figure 2.46: Orthogonal projection of F onto the n-direction ([1], pp. 67)
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Figure 2.47: Example 2.21 ([2], pp. 68)

Figure 2.48: Solution to example 2.21

onto the z-axis and the x-y plane. Then the force in the x-y plane is further
decomposed into the x- and y- axes, respectively.

P = P cos 30 cos 20i + P cos 30 sin 20j + P sin 30k

= 26.0i + 9.48j + 16k N

The directional angle is determined by eq. 2.24.

θx = acos
(

P·i
P

)

= 34.5◦

θy = acos
(

P·j
P

)

= 72.8◦

θz = acos
(

P·k
P

)

= 60◦

Example 2.22 ([1], Prob. 2/112) The rectangular plate is supported by hinges
along its side BC and by the cable AE. If the cable tension is 300 N, determine
the projection onto line BC of the force exerted on the plate by the cable.
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Figure 2.49: Example and solution of 2.22 ([1], pp. 72)

Note that E is the midpoint of the horizontal upper edge of the structural support.

Solution: This problem is best solved by first determining the pertinent
directional unit vectors. Next we describe the tension T and the unit vector nBC

onto which it will be projected. Finally, the projection is found by calculating
the dot product of the tension with that unit vector. For each point,

A = (−0.4, 0, 1.2 sin 25) B = (0, 0, 1.2 sin 25) C = (0, 1.2 cos 25, 0)

D = (−0.4, 1.2 cos 25, 0) E = (0, 0.6 cos 25, 0)

The tension T and the unit vector nBC is then readily determined:

T = T
AE

|AE| = 142.1i + 193.2j− 180.2k

nBC =
BC

|BC| = 0.9063i− 0.4226k

Therefore the projection of T onto nBC is

TBC = T · nBC = 251.2 N

Example 2.23 ([2], Prob. 2/104) The power line is strung from the power-pole
arm at A to point B on the same horizontal plane. Because of the sag of the
cable in the vertical plane, the cable makes an angle of 15◦ with the horizontal
where it attaches to A. If the cable tension at A is 800 N, write T as a vector
and determine the magnitude of its projection onto the x-z plane.

Solution: Direction of the tension T is conveniently described by two an-
gles. Imagine a line originally oriented along CB. It is then rotated by the
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Figure 2.50: Example and solution of 2.23 ([2], pp. 69)

angle θ so the new orientation is along AB. Finally the line is vertically rotated
downward by 15◦ and hence its direction is the same as that of T. With the
known directional unit vector, we can write T in x-y-z frame. The magnitude of
its projection onto the x-z plane is followed immediately.

The angle θ is
θ = atan (1.5/10) = 8.53◦

Therefore the tension force T can be described as

T = T cos 15 cos θi + T cos 15 sin θj− T sin 15k = 764.2i + 114.6j− 207k N

The magnitude of its projection onto the x-z is then

Txz =
√

T 2
x + T 2

z = 792 N

It can also be determined by first calculating the angle that T made with the
y-axis:

θy = acos

(

T · j
T

)

= 81.76◦

Referring to fig. 2.43 and eq. 2.18,

Txz = T sin θy = 792 N
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Figure 2.51: Moment MO of F about O ([1], pp. 74)

2.6 3-D Force, Moment, and Couple

Calculation of the moment and couple in three dimension using the scalar ap-
proach is more awkward than using the vector approach. Figure 2.51 shows the
relevant parameters. r is a vector originated from O to an arbitrary point on the
line of the force vector F. MO is the moment of F about O. d is the length of
the perpendicular line from O to the line of the force vector and α is the angle
that r made with F. Consequently, the moment of F about O is

MO = r× F (2.26)

From the equation, it can be concluded that MO ⊥ r and MO ⊥ F. Also,
MO is through O and is normal to the plane made by r and F.

MO may be determined by writing r and F in the rectangular coordinate
frame and performing the vector cross product;

MO = r× F = (rxi + ryj + rzk)× (Fxi + Fyj + Fzk)
= (ryFz − rzFy) i + (rzFx − rxFz) j + (rxFy − ryFx)k

(2.27)
This formula can be remembered easily by recognizing the expression as the
following determinant;

r× F ⊲

∣

∣

∣

∣

∣

∣

i j k
rx ry rz

Fx Fy Fz

∣

∣

∣

∣

∣

∣

(2.28)
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Figure 2.52: Moment determination by the principle of moment ([1], pp. 75)

We can proofcheck this vector cross product and gain understanding in the
process of determining the moment by applying the principle of moment. Ac-
cording to fig 2.52,

Mx = ryFz − rzFy

My = rzFx − rxFz

Mz = rxFy − ryFx

(2.29)

which confirms the mathematical operation.

2.6.1 Moment about an axis

Sometimes it is necessary to know the moment Mλ of F about an axis λ through
O. See fig. 2.53. Essentially Mλ is the component of MO along the λ-axis.
Therefore the following steps are used to determine Mλ.

1. Determine moment MO of F about O: MO = r× F.

2. Orthogonally project MO onto the n-direction along the axis λ. That is

Mλ = (MO · n)n = (r× F · n)n (2.30)
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Figure 2.53: Moment of F about the axis λ ([1], pp. 75)

From mathematics, the magnitude of Mλ is

Mλ =

∣

∣

∣

∣

∣

∣

rx ry rz

Fx Fy Fz

nx ny nz

∣

∣

∣

∣

∣

∣

(2.31)

There is an interesting point of the moment about an axis. Point O can be any
point on the axis λ and it still gives equal value of Mλ even, of course, MO is
distinct for each of the chosen point O.

2.6.2 3-D couple

Analogous to 2-D situation, two forces with equal magnitude but pointing in the
opposite direction and with non-zero offset will induce the couple. Its direction
is perpendicular to the plane made with the line of action of the forces. See
figure 2.54.

Evaluation of the couple is straightforward. First determine the moment of
each of the force about an arbitrary point O. Sum of these two moments will be
the couple of the pair of forces. This is also equivalent to the cross product of an
arbitrary position vector r, connecting the pair of forces, with the force vector it
is pointing to.

Therefore the couple is a free vector and has no associated point. Moreover
the couple can be helpful in adding pair of forces. Pair of forces {F1,−F1} and
{F2,−F2} can be added up by noting they are equivalent to the couple M1

and M2. Since couples are free vectors, they can move and add up using the
parallelogram law so long as the direction is maintained. Result is the couple M,
which is then decomposed back into a pair of forces {F,−F}.
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Figure 2.54: Three dimensional couple ([1], pp. 76)

Figure 2.55: Three dimensional equivalent force-couple system ([1], pp. 77)

2.6.3 3-D equivalent force-couple system

The procedure in 2-D problem can be readily extended to cope with 3-D prob-
lem. To maintain the external effect of moving the force to a new location, the
compensated couple must be provided. Specifically,

1. Specify the destination point B.

2. Move the force so the new line of action pass through B. The new line
are parallel to the original one. By the force-couple equivalent method, the
couple must be generated to preserve the motion effect of the original force
system. If r is the position vector from B to any point on the line of action
of F, the compensated couple is M = r× F.

Figure 2.55 illustrates the procedure.

Example 2.24 ([1], Prob. 2/123) The helicopter is drawn here with certain
3-D geometry given. During a ground test, a 400 N aerodynamic force is applied
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Figure 2.56: Example and solution of 2.24 ([1], pp. 82)

to the tail rotor at P as shown. Determine the moment of this force about point
O of the airframe.

Solution: For this simple force P, we can determine the moment component-wise.
It is obvious that the force is in y-direction. Hence it does not cause moment in
the y-direction. By observation,

MO = (400× 1.2) i + (400× 6)k = 480i + 2400k N

Example 2.25 ([2], Prob. 2/118) In picking up a load from position A, a cable
tension T of magnitude 21 kN is developed. Calculate the moment that T
produces about the base O of the construction crane.

Solution: Vectorial approach is appropriate for this problem because the
location of each point is explicitly given. According to the given coordinate
frame,

A = (0, 18, 30) B = (6, 13, 0)

The tension vector T is

T = T
AB

|AB| = 4.06i− 3.39j− 20.32k kN

And the position vector r is

r = OA = 18j + 30k m

Therefore, the moment of T about O is

MO = r×T = −264.2i + 121.9j− 73.2k kNm
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Figure 2.57: Example and solution of 2.25 ([2], pp. 80)

Example 2.26 ([2], Prob. 2/122) The special-purpose milling cutter is sub-
jected to the force of 1200 N and a couple of 240 Nm as shown. Determine the
moment of this system about point O.

Solution: First describe all quantities in the given coordinate system.

R = 1200 cos 30j− 1200 sin 30k = 1039j− 600k N

r = 0.2i + 0.25k m

The moment of this system about O is the summation of the moment induced
by the force and the free vector couple;

MO = r×R + 240 cos 30j− 240 sin 30k

= −259.8i + 327.8j + 87.8k Nm

Example 2.27 ([1], Prob. 2/141) A 5 N vertical force is applied to the knob of
the window-opener mechanism when the crank BC is horizontal. Determine the
moment of the force about point A and about the line AB.

Solution: As usual, describe the related quantities using the same coordi-
nate frame.

r = 75 cos 30i + 75j + 75 sin 30k mm

F = −5k N
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Figure 2.58: Example and solution of 2.26 ([2], pp. 81)

The moment of the force about point A is

MA = r× F = −375i + 325j Nmm

The moment about the line AB is then the component of MA about AB, which
can be found by the dot product.

nAB = cos 30i + sin 30k

MAB = (MA · nAB)nAB = −281i− 162.4k Nmm

2.7 3-D Resultants

Resultant is the simplest force combination which can replace the original system
of forces, moments, and couples without altering the external effect of the system
on the rigid body. As mentioned earlier, the vectorial approach is more suitable to
the 3-D problems. Here the procedure in determining the resultant is explained.

1. Define the suitable rectangular coordinate system and specify a convenient
point O about which the moment will be determined.

2. Move all forces so the new lines of action pass through point O. This step
is already explained in the force-couple equivalence topic.

3. Sum all the forces to R and sum all the couples to M.

R =
∑

F (2.32)
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Figure 2.59: Example and solution of 2.27 ([1], pp. 87)

M =
∑

(r× F) (2.33)

4. Locate the correct line of action of the resultant R. This step is the reverse
of the force-couple equivalence. The goal is to solve for the piercing point
of the resultant with the object. In 3-D problem, it involves determining 2
unknowns in the moment equation, r×R = M. The matrix equation is of
rank 2. That is one of the equation is degenerated.

Figure 2.60 captures the process.
The selected point O, which can be any convenient point, specifies the value of

the couple M. This is because in statics, we can set up the equilibrium equations

∑

F = O (2.34)

∑

M = 0 (2.35)

at virtually any point. However, in dynamics the equations of motion will be
greatly simplified at some special points, such as the fixed point or the point of
center of gravity (CG). The equations at CG are

∑

F = mẍG (2.36)

∑

MG = IGθ̈ (2.37)

Therefore in dynamics it is usually necessary to calculate the resultants at CG,
which is the selected point O in our context.
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Figure 2.60: Determination of the resultant force ([1], pp. 88)

2.7.1 Resultants of special force systems

Concurrent forces If all forces are concurrent, there will be no moment about
the point of concurrency. That is,

R =
∑

F (2.38)

and
M =

∑

(r× F) = 0 (2.39)

Parallel forces If the lines of action of all forces are parallel, the resultant force
can be obtained algebraically. The magnitude of the resultant force, R, is the
magnitude of the algebraic sum of the given forces.

|R| =
∣

∣

∣

∑

F
∣

∣

∣
(2.40)

And the moment will be perpendicular to the parallel lines of action.

MO =
∑

M = r×R (2.41)

Wrench resultant If the resultant force and the resultant moment, as shown
in fig. 2.61, the resultant system is called wrench resultant. An example is the
reaction force and moment of the screwdriver. If the force and moment are in the
same direction, it is called positive wrench. Otherwise it is the negative wrench.

Wrench resultant is the simplest form to visualize the effect of general force
system on to the object. That is the object is simultaneously translating and
rotating about the unique axis: the screw axis.
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Figure 2.61: A special force system: wrench system ([1], pp. 89)

2.7.2 Wrench resultant – Force-Couple equivalence

Any force system has the equivalent wrench resultant. Following is the procedure
in determining the wrench resultant. Figure 2.62 graphically shows each step.

1. Determine the force-couple resultant R and M at any convenient point O.

2. Orthogonally project M along and perpendicular to the line of action of R,
nR. Let M1 and M2 be the components of M along and perpendicular to
nR, respectively. Then,

nR =
R

|R| (2.42)

M1 = (M · nR)nR (2.43)

M2 = M−M1 (2.44)

3. Transform the couple M2 into the equivalent pair of R and −R, with −R
applied at O to cancel R, as shown in fig. 2.62c.

4. Since the couple is a free vector, we can move M1, which is parallel to R,
such that its line of action is the same as that of R. The result is the wrench
resultant with the correct line of action.

Example 2.28 ([1], Prob. 2/148) The pulley and gear are subjected to the loads
shown. For these forces, determine the equivalent force-couple system at point O.

Solution: This is the typical step in shaft analysis. First we determine
the resultant force R. The resultant moment MO is determined by the help of
principle of moment and by inspection, since the force system is rather simple.

R = (800 + 200− 1200 sin 10) i + 1200 cos 10j = 792i + 1182j N

Moment at O by 800 N force:

M1 = −800× 0.55j− 800× 0.1k
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Figure 2.62: Wrench resultant determination ([1], pp. 90)

Moment at O by 200 N force:

M2 = −200× 0.55j + 200× 0.1k

Moment at O by 1200 N force:

M3 = 1200 sin 10× 0.22j + 1200 cos 10× 0.075k + 1200 cos 10× 0.22i

Therefore the resultant moment is the sum of the moments of three forces:

MO = M1 + M2 + M3 = 260i− 504j + 28.6k Nm

Example 2.29 ([1], Prob. 2/152) Two upward loads are exerted on the small
3D truss. Reduce these two loads to a single force-couple system at point O.
Show that R is perpendicular to MO. Then determine the point in the x-z plane
through which the resultant passes.

Solution: Since the moment involves the cross product of the position and
force vector, R must be perpendicular to MO. However we have to show it
explicitly for this problem.

R = 800j + 1600j = 2400j N
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Figure 2.63: Example and solution of 2.28 ([1], pp. 95)

By inspection,

MO = 800× 2.4k + 1600× 2.4k + 1600× 0.9i = 1440i + 5760k Nm

It is therefore obvious that R is perpendicular to MO.
To determine the point in the x-z plane through which the resultant passes,

we can use the observation since R is a simple force aligning with one of the
coordinate axis. Note R is parallel to the y-axis and must produce the moment
of 5760k Nm. Therefore R must be x m far from the y-z plane to produce 5760k
Nm. That is

5760 = 2400× x, x = 2.4 m

And R must also produce the moment of 1440i Nm. Therefore R must be −z m
far from the x-y plane to produce 1440i Nm. That is

1440 = 2400× (−z) , z = −0.6 m

Consequently, the resultant force R passes through (2.4,−0.6) m in the x-z plane.

Example 2.30 ([2], Prob. 2/141) Replace the two forces acting on the block
by a wrench. Write the moment M associated with the wrench as a vector and
specify the coordinates of the point P in the x-y plane through which the line of
action of the wrench passes.

Solution: In this problem, we will follow the procedure of determining the
wrench resultant explained in section 2.7.2. First, we choose point O at which
to determine the force-couple resultant. Hence,

R = F i− Fk
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Figure 2.64: Example and solution of 2.29 ([1], pp. 96)

MO = F (a + c) j− Fbk

Next, we project MO onto the direction parallel and perpendicular to nR, for
which its value is

nR =
R

|R| =
1√
2
i− 1√

2
k

Consequently, the components of MO are

M‖ = (MO · nR)nR =
Fb

2
i− Fb

2
k

M⊥ = MO −M‖ = −Fb

2
i + F (a + c) j− Fb

2
k

Thirdly, we transform the couple M⊥ into pair of forces R and −R. Suppose
r is the position vector of the desired piercing point in the x-y plane which can
be described as

r = xi + yj

The moment equation is formed to transform between the pair of forces and the
couple;

M⊥ = r×R

in which the values of M⊥ and R are substituted to solve for r. The coordinates
are

x = a + c, y = b/2

Finally, the wrench consists of R and M‖ which pass through the x-y plane
at x = a + c and y = b/2.

Example 2.31 ([1], Prob. 2/159) The resultant of the two forces and couple
may be represented by a wrench. Determine the vector expression for the
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Figure 2.65: Example and solution of 2.30 ([2], pp. 94)

Figure 2.66: Example and solution of 2.31 ([1], pp. 98)

moment M of the wrench and find the coordinates of the point P in the x-z
plane through which the resultant force of the wrench passes.

Solution: The resultant force is just simply

R = 100i + 100j N

Another way to determine the wrench is to assume the point where the wrench
passes. Let point P in the x-z plane, where the wrench passes, has the coordinate
(x, 0, z). Consequently, the moment of the force system about P is

MP = 100× zi + 100× (0.4− x)k + 100× (0.4− z) j− 100× 0.3k− 20j
= 100zi + (20− 100z) j + (10− 100x)k Nm
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Note that this moment at P must be equal to the couple of the wrench pass-
ing through P , which is parallel to the resultant force. That is MP ‖ R. By
comparing the ratio of their components, we have

100

100z
=

100

20− 100z

and
10− 100x = 0

As the result,
x = 0.1 m, z = 0.1 m

and substituting back into the moment equation, we have

MP = 10i + 10j Nm
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3.1 Introduction

Newton’s first law states about the condition of a particle to be at rest or to be
moving with a constant velocity. This is called the equilibrium condition. Later,
physicists have extended the equilibrium condition to a body.

When a body is in equilibrium, the resultant on the body is zero. And if the
resultant on a body is zero, the body is in equilibrium. Hence the necessary and
sufficient conditions for equilibrium of a body are

∑

F = O (3.1)

and
∑

M = 0 (3.2)

These equations reveal that it is the prerequisite to determine the resultant
force and moment acting on the body before the equilibrium condition can be
applied. The method of free body diagram, explained in the next section, is a
tool which helps in determining the correct resultant.

3.2 Mechanical System Isolation (FBD)

Free body diagram (FBD) is the most important first step in the mechanics
problems. It defines clearly the interested system to be analyzed. It reveals all
forces which act on the system. The system may be rigid, nonrigid, or their
combinations. The system may be in fluid, gaseous, solid, or their combinations.

FBD represents the isolated or combination of bodies as a single body. After
the FBD has been drawn, the corresponding indicated forces may be

1. contact force with other bodies that are removed virtually

2. body force such as gravitational or magnetic attraction forces

Figure 3.1 and 3.2 show common examples of modeling the action of forces
in two dimensional problems. Beware that these are not the FBDs. Only the
specific action forces, after the surroundings have been removed, are shown. Here
are some explanation of each particular case.

1. Force by a flexible cable is always the tension force. Weight of the cable
may be significant and hence make the cable sags.

2. Ideally, smooth surface cannot support the tangential or frictional force.
For the rough surface, contact force may not necessary be normal to the
tangential surface.
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Figure 3.1: Common action of forces in two dimensional analysis ([1], pp. 111)
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Figure 3.2: Common action of forces in two dimensional analysis (continued) ([1],
pp. 112)
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3. Ideally, roller, rocker, smooth guide, or slider eliminate the frictional force.
That is the supports cannot provide the resistance to motion in the tan-
gential direction.

4. Pin connection provides support force in any direction normal to the pin
axis. If the joint is not free to turn, a resisting couple may also be supported.

5. The built-in or fixed support of the beam is capable of supporting the axial
force, the shear force, and the bending moment.

6. Gravitational force is a kind of distributed non-contact force. The resultant
single force is the weight acted through the center of mass (C.M.) towards
the center of the earth.

7. Remote action force has the same overall effects on a rigid body as direct
contact force of equal magnitude and direction.

8. On the FBD, the force exerted on the body to be isolated by the body to
be removed is indicated.

9. The sense of the force exerted on the FBD by the removed bodies opposes
the movement which would occur if those bodies were removed.

10. If the correct sense cannot be known at first place, the sense of the scalar
component is arbitrarily assigned. Upon computation, a negative algebraic
sign indicates that the correct sense is opposite to that assigned.

After we have mastered indicating the action of forces, construction of the
FBD is at eased. Here is a guideline in drawing the complete FBD.

1. Make decision which body or system is to be isolated. That system will
usually involve the unknown quantities.

2. Draw complete external boundary of the system to completely isolate it from
all other contacting or attracting bodies.

3. All forces that act on the isolated body by the removed contacting and
attracting bodies are represented on the isolated body diagram. Forces
should be indicated by vector arrows, each with its magnitude, direction,
and sense. Consistency of the unknowns must be carried throughout the
calculation.

4. Assign the convenient coordinate axes.

“Only after the FBD is completed should the governing equations be
applied”
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There are some tips in writing the FBD.

1. Include as much as possible the system in FBD while the unknowns are still
being revealed.

2. Internal forces to a rigid assembly of members do not influence the values
of the external reactions. And so the external response of the mechanism
as a whole would be unchanged.

3. Include the weights of the members on FBD.

4. Try to get the correct sense of the unknown vectors by visualizing the
motion of the whole system when the supports are pretended to disappear.
The correct sense will oppose the motion’s direction.

5. Follow the action of force prototypes in determining the forces acted by the
removed bodies.

Figure 3.3 shows some typical examples of drawing the FBD. In the first
example, the internal forces of the structure are not seen because the boundary
of the FBD encloses the entire structure. Hence only the external force P and
the reaction forces from the constraints are shown. The second example shows
the typical reaction force of the cantilever beam that bears the shear force, the
axial force, and the bending moment. The third example shows the reaction
force of the smooth surface contact, which is always perpendicular to the contact
surface. The last example reveals the effectiveness of hiding unwanted unknowns,
the cable tension in this case, inside the boundary of the FBD.

Example 3.1 ([1], Prob. 3/A,B) Complete the FBDs given in fig. 3.4 and 3.5.

Solution: By following the guideline given above, the complete FBDs as
shown in fig. 3.6 and 3.7 result.

3.3 2-D Equilibrium Conditions

From the Newton’s second law, a body is in equilibrium if all forces and moments
applied to it are in balance. For 2-D problems, the above conditions can be
written in formula as

∑

Fx = 0 (3.3)
∑

Fy = 0 (3.4)
∑

MO = 0 (3.5)

After we have finished writing the FBD, the equilibrium condition can then
be applied. FBD will give the answer of the left hand side of the equations, which
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Figure 3.3: Examples of drawing the free body diagram ([1], pp. 115)
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Figure 3.4: Example 3.1 ([1], pp. 118)
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Figure 3.5: Example 3.1 (continued) ([1], pp. 119)
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Figure 3.6: Solution to example 3.1
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Figure 3.7: Solution to example 3.1 (continued)
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are the resultant of the force system acting on the body of interest. Since the
object is in equilibrium, the resultant must be nulled and hence the zero value on
the right hand side. There are some things needed to be mentioned in applying
the equations.

1. The x-y coordinate system and the moment point O can be chosen arbi-
trarily.

2. Complete equilibrium in 2-D motion must satisfy all three equations. How-
ever, they are independent to each other. That is, equilibrium may only be
satisfied in some generalized coordinates.

3. System in equilibrium may stay still or move with constant velocity. In
both cases, the acceleration is zero.

At this point, the reader is armed with enough information to start practicing
the equilibrium problems. However it is helpful to know the characteristics of
some special cases of equilibrium problems. If we classify the problem according
to the force system, the following cases of equilibrium in two dimension, fig. 3.8,
may result.

If the force system is collinear, only one equilibrium equation
∑

Fx = 0 is
effective. The other equations (perpendicular force and moment equations) are
satisfied automatically and hence contribute nothing in solving the problems.
For the concurrent force system, the moment at the point of concurrency is
always satisfied. Therefore only the force equilibrium equations are usable.
In the case of parallel forces, the force in the perpendicular direciton is null.
Hence only the force equilibrium equation in the parallel direction and the
moment equation are active. Note that in general case of force system, all three
equilibrium equations are valid.

Two-force member is a body under the action of two force only. The
equilibrium condition of the two-force member requires the acting forces be
equal, opposite, and collinear. Only one equation of force along its direction is
then effective. One common assumption of the two-force member is that the
weight of the member is negligible. Sometimes it is the trade-off between the
simplification in solving the equilibrium problem and the accuracy of the answer.
Figure 3.9 depicts some two-force members.

Three-force member is a body under the action of three forces only.
The equilibrium condition of the three-force member requires the lines of action
of the three forces be concurrent. The only exception is when the three forces
are parallel. In this case, two equations of forces are effective. The moment
equation is satisfied automatically. The equivalent requirement is the closure of
the polygon of forces. See fig. 3.10. In many cases, the force system may be

Chulalongkorn University Phongsaen PITAKWATCHARA



3.3 2-D Equilibrium Conditions 69

Figure 3.8: Special cases of equilibrium in two dimension ([1], pp. 122)
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Figure 3.9: Two-force member ([1], pp. 122)

Figure 3.10: Three-force member ([1], pp. 123)

reduced to the three-force member by successive addition of the known forces.

Equation 3.3, 3.4, and 3.5 are not the only set of equations for equilibrium.
Here we represent another two sets of equations which also guarantee the equi-
librium of an object. The first set of equilibrium conditions are

∑

Fx = 0 (3.6)

∑

MA = 0 (3.7)

∑

MB = 0 (3.8)

where AB must not be perpendicular to the x-direction. See fig. 3.11 for the
equation setup.

∑

Fx = 0 forces the reaction to be only in the perpendicular
direction.

∑

MA = 0 requires that reaction to pass through A, and so do
∑

MB =
0 constraints the reaction to pass through B. However all three requirements will
be satisfied only if the resultant is zero, otherwise the moment equations will
make the nonzero resultant break the force equation.

Another set of equilibrium conditions are

∑

MA = 0 (3.9)
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Figure 3.11: An alternative equilibrium conditions ([1], pp. 123)

Figure 3.12: Another alternative equilibrium conditions ([1], pp. 123)

∑

MB = 0 (3.10)

∑

MC = 0 (3.11)

where A, B, and C are not on the same straight line. See fig. 3.12 for the
equation setup.

∑

MA = 0 and
∑

MB = 0 force the reaction to pass through
A and B. The equation

∑

MC = 0 does the same thing. However all three
requirements will be satisfied only if the resultant is zero, otherwise the last
moment equation will make the nonzero resultant break the first two equations.

Constraints and Statical Determinacy The equilibrium equation may
not always solve all unknowns in the problem. This is because the equilibrium
condition do not provide enough equations. Simply put, if the number of un-
knowns (including geometrical variables) is greater than the number of equations,
then we cannot solve it. This is because the system has more constraints than
necessary to maintain the equilibrium. This is called statically indeterminate
system. Extra equations obtained from force-deformation material properties
must also be applied to solve for the redundant constraints. If the number of
unknown is equal or less than the number of equilibrium equations, the system
is statically determinate. With some wrong installation of the supports, the
number of active constraints may be reduced unintentionally. See case (b) and
(c) of fig. 3.13.

Before giving some examples, let us review the guideline in solving the equi-
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Figure 3.13: Two Dimensional Constraints and Statical Determinacy ([1], pp.
125)

librium problems.

1. List known / unknown quantities. Then count the number of unknowns and
the number of available independent equations. If the number of unknowns
is greater than the number of equations, the problem cannot be solved solely
by the equilibrium conditions.

2. Determine the isolated system and draw the FBD.

3. Assign a convenient set of coordinate systems. Choose suitable moment
centers for calculation.

4. Write down the governing equations, e.g. [
∑

MO = 0], before the calcula-
tion.

5. Choose the suitable method in solving the problem; whether it be scalar,
vector, or geometric approach.

Example 3.2 ([1], Prob. 3/32) In a procedure to evaluate the strength of the
triceps muscle, a person pushes down on a load cell with the palm of his hand as
indicated in the figure. If the load-cell reading is 160 N, determine the vertical
tensile force F generated by the triceps muscle. The mass of the lower arm is 1.5
kg with mass center at G. State any assumptions.

Solution: Let us choose the system to be the lower arm. Consequently,
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Figure 3.14: Example 3.2 ([1], pp. 137)

the forces acting on it are the pushing force from the load-cell, the mass of
the arm, the tensile force by the triceps muscle, and the compressive force by
the humerus bone. The FBD of the system is shown in fig. 3.15. From the
figure, there are two unknowns. Hence two equations are required, which are
one moment and one force equations. First let us take the moment about O to
eliminate the compressive force.

[
∑

MO = 0] −T × 25− 1.5g × 150 + 160× 300 = 0

T = 1832 N

Force equation is then used to determine the tensile force produced by
the triceps, i.e.,

[
∑

Fy = 0] T − C − 1.5g + 160 = 0

C = 1977 N

Example 3.3 ([1], Prob. 3/39) The exercise machine consists of a lightweight
cart which is mounted on small rollers so that it is free to move along the inclined
ramp. Two cables are attached to the cart – one for each hand. If the hands
are together so that the cables are parallel and if each cable lies essentially in a
vertical plane, determine the force P which each hand must exert on its cable
in order to maintain an equilibrium position. The mass of the person is 70 kg,
the ramp angle is 15◦, and the angle β is 18◦. In addition, calculate the force R
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Figure 3.15: Solution to example 3.2

Figure 3.16: Example 3.3 ([1], pp. 139)

which the ramp exerts on the cart.

Solution: Assume the cart is lightweight and the rail friction is negligible.
Then we select the machine and the man as our system and draw the FBD as
shown in fig. 3.17. It is seen that there are two unknowns which are solvable
using two force equations.

[
∑

Fx′ = 0] 70g sin 15− T cos 9 = 0 T = 179.9 N

[
∑

Fy′ = 0] R− 70g cos 15− T sin 9 = 0 R = 691 N

To determine the force exerted by each hand, we choose the pulley and cable
as our system of interest and draw its FBD, as depicted in fig. 3.18. Only the
force exerted by each hand, P, is the unknown. The force along the line of action
of T must be null which means

[
∑

Fx′ = 0] −T + 4P cos 9 = 0 P = 45.5 N

Example 3.4 ([2], Prob. 3/29) A uniform ring of mass m and radius r carries
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Figure 3.17: Solution to example 3.3

Figure 3.18: Solution to example 3.3 (continued)
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Figure 3.19: Example 3.4 ([2], pp. 131)

an eccentric mass mo at a radius b and is in an equilibrium position on the
incline, which makes an angle α with the horizontal. If the contacting surfaces
are rough enough to prevent slipping, write the expression for the angle θ which
defines the equilibrium position.

Solution: Write the FBD of the system which consists of the ring and the
eccentric mass. The force acting on the system are the weights, the friction
force, and the normal force. Here the friction is not negligible and indeed makes
the system be in equilibrium. We have three unknowns, which are F , N , and θ.
However, the problem only asks us for the angle θ.

First we should take the moment equation about O to eliminate the unknown
N .

[
∑

MO = 0] Fr −mogb sin θ = 0 F = mogb sin θ
r

Then we use the force equilibrium equation in the x′-direction and substi-
tute the expression of F . Note that the normal force does not appear in the
equation.

[
∑

Fx′ = 0] F − (mo + m) g sin α = 0 θ = asin
[

r
b

(

1 + m
mo

)

sin α
]

Example 3.5 ([1], Prob. 3/43) The hook wrench or pin spanner is used to
turn shafts and collars. If a moment of 80 Nm is required to turn the 200 mm
diameter collar about its center O under the action of the applied force P,
determine the contact force R on the smooth surface at A. Engagement of the
pin at B may be considered to occur at the periphery of the collar.

Solution: First select the system of the wrench and the collar as shown in
fig. 3.22. From the FBD, the applied force P must be

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_3_4.eps


3.3 2-D Equilibrium Conditions 77

Figure 3.20: Solution to example 3.4

Figure 3.21: Example 3.5 ([1], pp. 140)

[
∑

MO = 0] 80− P × 0.375 = 0 P = 213.3 N

Now we must select only the spanner as our system which will reveal the
reaction force at A as shown in fig. 3.23. Note that this is a three-force member.
The moment equilibrium at B suppress the reaction R to appear in the equation.

[
∑

MB = 0] NA × 0.1 sin 60− P × (0.375 + 0.1 cos 60) = 0 NA = 1047 N

Example 3.6 ([1]) The small crane is mounted on one side of the bed of a
pickup truck. For the position θ = 40◦, determine the magnitude of the force
supported by the pin at O and the oil pressure p against the 50 mm-diameter
piston of the hydraulic cylinder BC.

Figure 3.22: Solution to example 3.5
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Figure 3.23: Solution to example 3.5 (continued)

Solution: To determine such forces, we select the linkage ACO as our sys-
tem and draw its FBD. Note that this is a three-force member. Hence three
reaction forces must meet at a common point, which helps in drawing the correct
forces shown in fig. 3.25. However, before setting up the equilibrium equations,
let us consider the geometry at BCDO to determine the moment arm of the
hydraulic force. Referring to fig. 3.26,

α = atan

(

360 + 340 sin 40− 110 cos 40

340 cos 40 + 110 sin 40

)

= 56.2◦

The perpendicular distance from BC to O is then

d = 360 cosα = 200 mm

Now we are ready to apply the equilibrium conditions to the system. Start
with the moment equation at O to eliminate unknown reaction at O.

[
∑

MO = 0] 120g × (785 + 340) cos 40− C × d = 0 C = 5063 N

Therefore the oil pressure of the hydraulic cylinder is

p =
C

πr2
= 2.58 MPa

The force equations will be used in determining the reaction supported by
the pin at O.

[
∑

Fx = 0] Ox − C cos α = 0 Ox = 2820 N

[
∑

Fy = 0] −Oy − 120g + C sin α = 0 Oy = 3030 N

O =
√

O2
x + O2

y = 4140 N

Example 3.7 ([2], Prob. 3/48) The rubber-tired tractor shown has a mass
of 13.5 Mg with the center of mass at G and is used for pushing or pulling
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Figure 3.24: Example 3.6 ([1])

Figure 3.25: Solution to example 3.6

Figure 3.26: Solution to example 3.6 (continued)
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heavy loads. Determine the load P which the tractor can pull at a constant
speed of 5 km/h up the 15-percent grade if the driving force exerted by the
ground on each of its four wheels is 80 percent of the normal force under that
wheel. Also find the total normal reaction NB under the rear pair of wheels at B.

Solution: The inclined coordinate system is suitable for this problem. We
draw the FBD of the truck as our system. The forces are its weight, the pulling
load P, the friction force, and the normal force on the wheels. Note that the
reaction at the front and rear wheels are different due to the incline and the
center of gravity is not at the midway between the wheels.

The problem states the driving force is 80 percent of the normal force of that
wheel. Hence there is only one unknown for each wheel. Totally there are 3
unknowns; the normal forces on the wheels and the pulling force. Let us apply
the force equilibrium equations first.

[
∑

Fx′ = 0] P − 0.8NA − 0.8NB + 13500g × 15√
152+1002

= 0

[
∑

Fy′ = 0] NA + NB − 13500g × 100√
152+1002

= 0

We see that there are three unknowns in two equations. Another equation
from the moment equilibrium must be solved simultaneously. Let us choose to
take the moment about A.

[
∑

MA = 0] NB × 1.8− P × 0.6− 13500g × 100√
152+1002

× 1.2

−13500g × 15√
152+1002

× 0.825 = 0

Three unknowns are then determined as

NA = 6.3 kN, NB = 124.7 kN, P = 85.1 kN

Alternatively, we may use a different set of equilibrium equations
[

∑

MA = 0
] [

∑

MB = 0
] [

∑

Fx′ = 0
]

in solving for the unknowns.

Example 3.8 ([1], Prob. 3/59) Pulley A delivers a steady torque (moment) of
100 Nm to a pump through its shaft at C. The tension in the lower side of the
belt is 600 N. The driving motor B has a mass of 100 kg and rotates clockwise.
Determine the magnitude R of the force on the supporting pin at O.

Solution: To determine the reaction at O, we must know the reaction at
the spring support and the upper side tension. This leads us to draw the FBD
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Figure 3.27: Example 3.7 ([2], pp. 136)

Figure 3.28: Solution to example 3.7
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of the pulley A. Since the pulley A delivers 100 Nm torque to a pump, there
must be the moment reaction resisting the clockwise rotation of it. See fig. 3.30.
The moment equilibrium is then used to determine the tension force, T .

[
∑

MC = 0] (600− T )× 0.225− 100 = 0

T = 155.6 N

Next we draw the FBD of the motor, fig. 3.31, of which the supporting
forces O and P are revealed. Determining three unknowns are relatively
straightforward.

[
∑

MD = 0] Oy × 0.25− 600× (0.2− 0.075)− 100g × 0.125

−T × 0.075− T cos 30× 0.2 + T sin 30× 0.125 = 0

Oy = 906 N

[
∑

Fx = 0] T cos 30 + 600− Ox = 0 Ox = 734.7 N

O =
√

O2
x + O2

y = 1.17 kN

[
∑

Fy = 0] T sin 30− 100g − P + Oy = 0 P = 2.8 N

Note the tension in the rod at the left leg results from the compressed
spring to resist the rotation of the motor stator.

Example 3.9 ([2], Prob. 3/52) When setting the anchor so that it will dig into
the sandy bottom, the engine of the 40 Mg cruiser with the center of gravity at
G is run in reverse to produce a horizontal thrust T of 2 kN. If the anchor chain
makes an angle of 60◦ with the horizontal, determine the forward shift b of the
center of buoyancy from its position when the boat is floating free. The center of
buoyancy is the point through which the resultant of the buoyant force passes.

Solution: When the boat is free floating (no thrust or tension), the buoy-
ancy force is equal to the weight and acting at the C.G. At the times the boat
moves backward, the anchor chain is pulled against the thrust force. This
changes the buoyancy force, both in magnitude and point of application, to
maintain the equilibrium. Figure 3.33 is the FBD of this system. Apply the
equilibrium equations to solve for three unknowns; A, B, and b.

[
∑

Fx = 0] A cos 60− 2000 = 0 A = 4 kN
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Figure 3.29: Example 3.8 ([1], pp. 144)

Figure 3.30: Solution to example 3.8

Figure 3.31: Solution to example 3.8 (continued)
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Figure 3.32: Example 3.9 ([2], pp. 137)

Figure 3.33: Solution to example 3.9

[
∑

Fy = 0] B − 40000g − A sin 60 = 0 B = 395, 864 N

[
∑

MA = 0] 40000g × 8− 2000× 3− Bx = 0 x = 7.915 m

b = 8− x = 85.2 mm

Example 3.10 ([2], Prob. 3/63) A special jig for turning large concrete pipe
sections (shown dotted) consists of an 80 Mg sector mounted on a line of rollers
at A and a line of rollers at B. One of the rollers at B is a gear which meshes
with a ring of gear teeth on the sector so as to turn the sector about its geometric
center O. When α = 0, a counterclockwise torque of 2460 Nm must be applied
to the gear at B to keep the assembly from rotating. When α = 30◦, a clockwise
torque of 4680 Nm is required to prevent rotation. Locate the mass center G of
the jig by calculating r and θ.

Solution: The problem gives two different postures that are in equilibrium
and ask for the locating the C.G. by the parameters r and θ. Therefore two
equations coming from each posture of equilibrium must be constituted and
solved. For the case when α = 0, a CCW torque is applied to the gear B.
Therefore the reaction force at the meshing teeths with the jig must be as shown
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Figure 3.34: Example 3.10 ([2], pp. 141)

in fig. 3.35. For the case of α = 30◦, a CW torque is applied instead. Hence
the reaction force at the meshing teeths is as shown in fig. 3.36. In each case,
the tangential component of the reaction force is determined by the moment
equilibrium equation:

[
∑

MB = 0] α = 0◦ : 2460− F1 × 0.24 = 0 F1 = 10250 N

α = 30◦ : −4680 + F2 × 0.24 = 0 F2 = 19500 N

The reaction is imparted to the jig, shown in fig. 3.37, along with the one
from the rollers A. To avoid determining the unnecessary unknowns, NA and
NB, we should use the moment equation taken at the center point O. For each
case, we have

[
∑

MO = 0] α = 0◦ : 80000g × r cos θ − 10250× 5 = 0

α = 30◦ : −80000g × r cos (180− 30− θ) + 19500× 5 = 0

Solving the above equations simultaneously, the location of the C.G. is
determined.

r = 367 mm θ = 79.8◦
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Figure 3.35: Solution to example 3.10

Figure 3.36: Solution to example 3.10 (continued)

Figure 3.37: Solution to example 3.10 (continued)

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/sol_3_10_1.eps
./figs/sol_3_10_2.eps
./figs/sol_3_10_3.eps


3.4 3-D Equilibrium Conditions 87

3.4 3-D Equilibrium Conditions

From the Newton’s second law, a body is in equilibrium if all forces and moments
applied to it are in balance. For 3-D problems, the above conditions can be
written in formula as

∑

Fx = 0 (3.12)

∑

Fy = 0 (3.13)

∑

Fz = 0 (3.14)

∑

MOx = 0 (3.15)

∑

MOy = 0 (3.16)

∑

MOz = 0 (3.17)

After we have finished writing the FBD, the equilibrium condition can then
be applied. FBD will give the answer of the left hand side of the equations, which
are the resultant of the force system acting on the body of interest. Since the
object is in equilibrium, the resultant must be nulled and hence the zero value on
the right hand side. There are some things needed to be mentioned in applying
the equations.

1. The x-y-z coordinate system and the moment point O can be chosen arbi-
trarily.

2. Complete equilibrium in 3-D motion must satisfy all six equations. How-
ever, they are independent to each other. That is, equilibrium may only be
satisfied in some generalized coordinates.

3. System in equilibrium may stay still or move with constant velocity. In
both cases, the acceleration is zero.

Figure 3.38 shows common examples of modeling the action of forces in three
dimensional problems. Beware these are not the FBDs. Only the specific action
forces, after the surroundings have been removed, are shown. Here are some
explanation of each particular case.

1. Reaction force of the member in contact with the smooth surface, or ball-
supported member, is normal to the surface and directed toward the mem-
ber. It is usually denoted by N.
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Figure 3.38: Common action of forces in three dimensional analysis ([1], pp. 147)
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2. Reaction force of the member in contact with the rough surface has both
the normal and tangential components. To determine these forces, we first
seek for the contact plane which is tangent to both contact surfaces. Normal
force, N, acts in the direction normal to the plane while tangential force,
F, lies in the plane. Tangential force is commonly recognized as the friction
force.

3. Usually there will be additional reaction force corresponding to the addi-
tional constraint. In the example, the lateral force P is introduced as the
rail also prevents the wheel from the sideway motion, in addition to the
normal force N.

4. The ball and socket joint constraints the point on each linkage to always
be together. This requires the joint to support a force R.

5. If the joint is welded or completely embedded, two linkages cannot be moved
relative to each other. Therefore the additional supporting moments must
be ensured to prevent the rotational motion.

6. The thrust bearing support prevents the shaft from moving and rotating in
all direction except the rotational motion about the shaft axis. Hence three
dimensional reaction forces, Rx, Ry, and Rz, must be supplied. In addition,
the resisting moment in x and z- direction must be provided as well.

At this point, the reader is armed with enough information to start practicing
the equilibrium problems. However it is helpful to know the characteristics of
some special cases of equilibrium problems. If we classify the problem according
to the force system, the following cases of equilibrium in three dimension, fig. 3.39,
may result.

For the concurrent force system, the moment at the point of concurrency
is always satisfied. Therefore only the force equilibrium equations are usable.
If the force system has all forces being concurrent with a line, i.e. all forces
intersecting a common line, then the moment of the forces about that line is
automatically null. Therefore only five equilibrium equations are effective. In
the case of parallel forces, the force in the perpendicular direction is null. Hence
only the force equilibrium equation in the parallel direction and the moment
equations about the lines in the plane perpendicular to the parallel forces are
active. Note that in general case of force system, all six equilibrium equations
are valid.

Constraints and Statical Determinacy The equilibrium equation may
not always solve all unknowns in the problem. This is because the equilibrium
condition do not provide enough equations. Simply put, if the number of un-
knowns (including geometrical variables) is greater than the number of equations,
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Figure 3.39: Special cases of equilibrium in three dimension ([1], pp. 148)
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then we cannot solve it. This is because the system has more constraints than
necessary to maintain the equilibrium. This is called statically indeterminate
system. Extra equations obtained from force-deformation material properties
must also be applied to solve for the redundant constraints. If the number of
unknown is equal or less than the number of equilibrium equations, the system
is statically determinate. With some wrong installation of the supports, the
number of active constraints may be reduced unintentionally. See case (b) and
(c) of fig. 3.40.

Example 3.11 ([2], Prob. 3/71) The light right angle boom which supports
the 400 kg cylinder is supported by three cables and a ball-and-socket joint at O
attached to the vertical x-y surface. Determine the reactions at O and the cable
tensions.

Solution: The FBD of this problem is shown in fig. 3.42. There are six
unknowns; three reaction force components at O and three cable tensions.
We can simply set up three force equilibrium equations and three moment
equilibrium equations about any point. However solving the resulting equations
may be intractable. A little thought before writing down the solution can be
helpful. For this problem, the moment equilibrium about line OB suppresses
five unknowns to show up. Only TAC will appear in the equation, which is easy
to solve. Examining the FBD in this manner helps avoid solving simultaneous
equations unnecessarily.

First, let us determine the pertaining unit vectors:

nAC = −0.408i + 0.408j− 0.816k, nBD = 0.707j− 0.707k
nBE = −k, nOE = i
nOB = 0.6i + 0.8k, nOD = 0.6i + 0.8j

Next, we choose to take the moment about line OB to determine TAC.

[
∑

MOB = 0] [(−0.75i)× (−400gj) + (2k)× TACnAC] · nOB = 0

TAC = 4808.8 N

Then, take the moment about line OD to determine TBE.

[
∑

MOD = 0]

[(2k)× TACnAC + (0.75i + 2k)× (−400gj) + (1.5i)× TBEnBE] · nOD = 0

TBE = 654 N
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Figure 3.40: Three Dimensional Constraints and Statical Determinacy ([1], pp.
149)
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Figure 3.41: Example 3.11 ([2], pp. 151)

The last cable tension TBD is found from taking the moment about line OE.

[
∑

MOE = 0]

[(2j)× TBDnBD + (0.75i + 2k)× (−400gj) + (2k)× TACnAC] · nOE = 0

TBD = 2775.1 N

Determining the reactions at O is rather straightforward. The sum of the
forces acting on the system in any direction must be zero.

[
∑

F = 0] Ox = 1962 N, Oy = 0 N, Oz = 6540 N

Example 3.12 ([1], Prob. 3/67) The 600 kg industrial door is a uniform
rectangular panel which rolls along the fixed rail D on its hanger-mounted
wheels A and B. The door is maintained in a vertical plane by the floor-mounted
guide roller C, which bears against the bottom edge. For the position shown
compute the horizontal side thrust on each of the wheels A and B, which must
be accounted for in the design of the brackets.

Solution: The FBD of the door including the hanger A and B is shown in
fig. 3.44. Due to the offset of the door’s weight and the normal forces at the
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Figure 3.42: Solution to example 3.11

wheels, the normal force at the guide rollor C points in the direction shown to
counter for the induced moment. Hence the side thrusts on the wheels must
point in the opposite direction to balance the force.

[
∑

MAB = 0] 600g × 0.15−NC × 3 = 0, NC = 294.3 N

[
∑

MAz = 0] NC × 0.6− Bx × 3 = 0, Bx = 58.86 N

[
∑

Fx = 0] Ax + Bx −NC = 0, Ax = 235.44 N

Example 3.13 ([1], Prob. 3/73) The smooth homogeneous sphere rests in the
120◦ groove and bears against the end plate which is normal to the direction
of the groove. Determine the angle θ, measured from the horizontal, for which
the reaction on each side of the groove equals the force supported by the end plate.

Solution: First the FBD will be drawn according to the given condition
that the reaction on each side of the groove must equal the force supported by
the end plate. However, it is rather difficult to draw and visualize the FBD of the
sphere in three dimensions. Therefore the FBD will be drawn in two orthogonal
views; along and perpendicular to the V-groove. Forces acting on the sphere will
then be the projected components onto that view. Also the coordinate frame
x-y-z is set at the center of the sphere for convenience. See fig. 3.46.

Now the equilibrium conditions are ready to be applied under the condition
that N1 = N2 = Nr = N .

[
∑

Fy = 0] N1 = N2 = N

[
∑

Fz = 0] mg cos θ = 2N cos 30
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Figure 3.43: Example 3.12 ([1], pp. 154)

Figure 3.44: Solution to example 3.12
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Figure 3.45: Example 3.13 ([1], pp. 156)

Figure 3.46: Solution to example 3.13

[
∑

Fx = 0] Nr = mg sin θ

Under the condition Nr = N ,

tan θ =
1

2
cos 30 ⇒ θ = 30◦, N = mg/2

Example 3.14 ([1], Prob. 3/75) The mass center of the 30 kg door is in the
center of the panel. If the weight of the door is supported entirely by the lower
hinge A, calculate the magnitude of the total force supported by the hinge at B.

Solution: From the problem statement, it is implied that there is no verti-
cal support force at the upper hinge B. This assumption must have been
enforced otherwise it cannot be solved by just the equilibrium conditions.
The FBD is straightforward with the five unknown supports revealed and the
appropriate coordinate frame set. Now it is ready to apply the equilibrium
conditions:
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Figure 3.47: Example 3.14 ([1], pp. 156)

[
∑

Fx = 0]
[
∑

MAy
= 0
]

30g × 0.36− Bx × 1.5 = 0, Bx = Ax = 70.6 N

[
∑

Fy = 0] [
∑

MAx
= 0] By × 1.5− 30g × 0.9 = 0, By = Ay = 176.6 N

B =
√

B2
x + B2

y = 190.2 N

Example 3.15 ([1], Prob. 3/82) One of the three landing pads for the Mars
Viking lander is shown in the figure with its approximate dimensions. The mass
of the lander is 600 kg. Compute the force in each leg when the lander is resting
on a horizontal surface on Mars. Assume equal support by the pads and consult
table D/2 in Appendix D as needed.

Solution: From the problem statement, it can be deduced that each land-
ing pad supports 200 kg force. However the gravitational constant on Mars
is g = 3.73m/s2. The leg with the landing pad is sectioned out and its FBD
is drawn. Forces in each strut are then revealed. Note that the forces are all
concurrent at the center of ball and socket. Hence the available equilibrium
conditions are reduced to three only.

First the relating unit vectors are determined:

nDC = 0.35i− 0.936k, nCA = −0.7664i + 0.418j + 0.4877k

Next, the moment equilibrium is taken about BA to determine FDC directly.

[
∑

MBA = 0] [(0.85k + 0.1i)× FDCnDC − 200g × 0.55j] · j = 0
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Figure 3.48: Solution to example 3.14

FDC = 1049.1 N

Finally, apply the force equilibrium conditions, or using the symmetry of
the leg about x-z plane,

[
∑

Fx = 0] [
∑

Fy = 0] FDCnDC ·i−2TCA×0.7664 = 0 ⇒ TCA = TCB = 239.5 N

Example 3.16 ([2], Prob. 3/88) The uniform 15 kg plate is welded to the
vertical shaft, which is supported by bearings A and B. Calculate the magnitude
of the force supported by bearing B during application of the 120 Nm couple
to the shaft. The cable from C to D prevents the plate and shaft from turning,
and the weight of the assembly is carried entirely by bearing A.

Solution: The plate and the attached vertical shaft are selected as the
system and its FBD is drawn. By the statement that the weight of the assembly
is carried entirely by bearing A, bearing B will experience only the radial forces.
Since the only vertical force is the assembly’s weight, the vertical component
reaction at the bearing A must be equal to the weight. The convenient coordinate
frame is defined and now it is ready to set up the equilibrium conditions.

nDC = −0.95i− 0.316j

First, take moment about the z-axis so all unknowns except the tension T
are eliminated.

[
∑

MOz
= 0] 120 + 0.6i× TnDC · k = 0, T = 632.9 N
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Figure 3.49: Example 3.15 ([1], pp. 158)

Figure 3.50: Solution to example 3.15
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Figure 3.51: Example 3.16 ([2], pp. 157)

Then, take moment about the line in y-direction passing A so the reac-
tion forces at A and By are eliminated.

[
∑

MAy
= 0
]

−Bx × 0.2 + 15g × 0.3 + Tx × 0.68 = 0, Bx = 2265 N

Finally, take moment about the line in x-direction passing A so By can
be determined.

[
∑

MAx
= 0] By × 0.2− Ty × 0.68 = 0, By = 680 N

B =
√

B2
x + B2

y = 2635 N

Example 3.17 ([2], Prob. 3/95) The uniform 900 × 1200 mm trap door has
a mass of 200 kg and is propped open by the light strut AB at the angle
θ = atan

(

4
3

)

. Calculate the compression FB in the strut and the force supported
by the hinge D normal to the hinge axis. Assume that the hinges act at the
extreme ends of the lower edge.

Solution: The trap door is isolated and its FBD is drawn. There are the
reactions at C and D, the strut force, and its weight. Reactions at D are
decomposed along the coordinate frame axes. It is unnecessary to do so for the
reactions at C, however.
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Figure 3.52: Solution to example 3.16

Since the strut lies along the obligue line, it is helpful to determine the direc-
tional unit vector.

nAB = −0.2857i− 0.4286j + 0.857k

The moment equilibrium conditions are applied at C so no reaction force at
C appears. Along the x-axis,

[
∑

MCx
= 0] (0.9j× TABnAB) · i− 200g × 0.45 cos 53.13 = 0, TAB = 688 N

Take the moment along the y-axis so only unknown Dz remains:

[
∑

MCy
= 0
]

−200g × 0.6 + Dz × 1.2 = 0, Dz = 981 N

About the z-axis, all unknowns except Dy are eliminated:

[
∑

MCz
= 0] −Dy × 1.2 + (−TABnAB · i)× 0.9 = 0, Dy = 147.4 N

Therefore, the supporting force at hinge D normal to its axis is

Dn =
√

D2
y + D2

z = 992 N

Example 3.18 ([1], Prob. 3/95) The uniform rectangular panel ABCD has a
mass of 40 kg and is hinged at its corner A and B to the fixed vertical surface.
A wire from E to D keeps edges BC and AD horizontal. Hinge A can support
thrust along the hinge axis AB, whereas hinge B supports force normal to the
hinge axis only. Find the tension T in the wire and the magnitude B of the force
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Figure 3.53: Example 3.17 ([2], pp. 160)

Figure 3.54: Solution to example 3.17
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Figure 3.55: Example 3.18 ([1], pp. 162)

supported by hinge B.

Solution: The FBD of the panel ABCD is shown in fig. 3.56. Note that
there is no reaction component along the hinge axis at B. Assigning the
coordinate frame x-y-z as shown,

nDE = 0.35i− 0.707j + 0.61k

Take moment about the x-axis so only the tension force remains:

[
∑

MAx
= 0] [0.6j× 40g (− cos 30k− sin 30i)] · i + (1.2j× TDEnDE) · i = 0

TDE = 278.55 N

Next, take moment about point A along the y-axis. Only Bz then ap-
pears in the equation.

[
∑

MAy
= 0
]

[1.2i× 40g (− cos 30k− sin 30i)] · j− 2.4Bz = 0

Bz = 169.9 N

Finally, take moment about the vertical line AE. Reaction forces at A,
the tension force, the panel’s weight, and Bz do not contribute any moment.
Therefore

[
∑

MAE = 0] By = 0 N ⇒ Bn = 169.9 N

Example 3.19 ([2], Prob. 3/98) Under the action of the 40 Nm torque (couple)
applied to the vertical shaft, the restraining cable AC limits the rotation of
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Figure 3.56: Solution to example 3.18

the arm OA and attached shaft to an angle of 60◦ measured from the y-axis.
The collar D fastened to the shaft prevents downward motion of the shaft in
its bearing. Calculate the bending moment M , the compression P , and the
shear force V in the shaft at section B. (note: Bending moment, expressed as a
vector, is normal to the shaft axis, and shear force is also normal to the shaft axis.)

Solution: The shaft is sectioned at B (fig. 3.58) so that the reaction forces and
moments are exposed. Reactions are the compressive force, the shear force, and
the bending moment. However the shaft is free to rotate about its axis. Hence
no supporting moment in this direction.

nAC = 0.53i + 0.38j− 0.758k

Take moment about the z-axis, so the tension force can be determined.

[
∑

Mz = 0] 40 + (0.18j× TACnAC) · k = 0 ⇒ TAC = 419.3 N

The compressive force can then be determined by the force equilibrium
condition in the vertical axis.

[
∑

Fz = 0] P + TACnAC · k = 0 ⇒ P = 317.8 N

The shear force is the remaining of the tension force after subtracting the
compressive force.

V =
√

V 2
x + V 2

y =
√

T 2
AC − P 2 = 273.5 N
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Figure 3.57: Example 3.19 ([2], pp. 161)

[
∑

MB = 0] MBx
i + MBy

j + 40 + (−0.09k + 0.18j)× TACnAC = 0

MBx
= 42.87 Nm, MBy

= 20.0 Nm Mb =
√

M2
Bx

+ M2
By

= 47.3 Nm

Example 3.20 ([1]) Determine the turning force at the knob DE and the
normal forces at each leg.

Solution: The reel is supported by the structure that is connected to the
reel axis. The turning force can be determined from the FBD of the reel only
(left of fig. 3.60). The reaction forces and the bending moments are exposed.
Since these forces are not of interest, take moment about the y-axis.

[
∑

My = 0] 100× 0.15− P × 0.3 = 0, P = 50 N

To determine the normal forces at each leg, consider the FBD of the whole
assembly shown on the right of fig. 3.60. Note of the friction forces which are
not negligible. Taking moment at B along the x-axis,

[
∑

MBx
= 0]

200× 0.2− 100 sin 15× 0.35− P sin 30× 0.075−NC × 0.5 =
0, NC = 58.13 N

Taking moment at B along the y-axis,
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Figure 3.58: Solution to example 3.19

[
∑

MBy
= 0
]

−NA × 0.525−NC × 0.2625 + 200× 0.2625 + 100 cos 15× 0.52

−100 sin 15× 0.2237− P cos 30× 0.635 + P sin 30× 0.1125 = 0

NA = 108.56 N

Lastly, use the force equilibrium condition in the vertical direction to
determine the remaining NB.

[
∑

Fz = 0] NA +NB +100 sin 15+NC −P sin 30− 200 = 0, NB = 32.44 N

Example 3.21 ([1], Prob. 3/114) The drum and shaft are welded together
and have a mass of 50 kg with mass center at G. The shaft is subjected to a
torque (couple) of 120 Nm, and the drum is prevented from rotating by the cord
wrapped securely around it and attached to point C. Calculate the magnitudes
of the forces supported by bearings A and B.

Solution: Select the drum and shaft unit and draw the FBD. Each bear-
ing supports the shaft by the radial force which is projected into the x- and z-
direction as shown in fig. 3.62.

First, take moment about B along the y-axis.

[
∑

MBy
= 0
]

T × 0.15− 120 = 0, T = 800 N

Then, take moment about B along the z- and x-axes to obtain the bear-
ing forces at A.
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Figure 3.59: Example 3.20 ([1])

Figure 3.60: Solution to example 3.20
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Figure 3.61: Example 3.21 ([1], pp. 168)

[
∑

MBz
= 0] T cos 66.87× 0.36−Ax × 0.7 = 0, Ax = 161.6 N

[
∑

MBx
= 0] 50g × 0.3 + T sin 66.87× 0.36− Az × 0.7 = 0, Az = 588.6 N

Finally, use the force equilibrium conditions to determine the bearing forces at B.

[
∑

Fx = 0] Ax + Bx − T cos 66.87 = 0, Bx = 152.6 N

[
∑

Fz = 0] Az + Bz − 50g − T sin 66.87 = 0, Bz = 637.6 N

Therefore,

A =
√

A2
x + A2

z = 610.4 N, B =
√

B2
x + B2

z = 655.6 N

Example 3.22 ([1], Prob. 3/115) Determine the reaction force and moment at
the double U-joint support O.

Solution: By the double U-joint mechanism, O can provide support forces
in any direction. However, it can only support the moment in the direction
normal to the back plate. The FBD of the boom system is shown in fig. 3.64.
The unit vector along the cable direction are

nBC = 0.13i− 0.91j + 0.39k, nAD = −0.48i− 0.84j + 0.241k

Only Oz remains when formulating the moment equation about AB:
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Figure 3.62: Solution to example 3.21

Figure 3.63: Example 3.22 ([1], pp. 168)
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Figure 3.64: Solution to example 3.22

[
∑

MAB = 0] Oz = 0 N

To determine the cable forces, take the moment about O normal to the y-axis
because the unknown moment M always lies along the y-axis.

[
∑

Mz = 0] (1.8i× TBCnBC) · k + (2.1j× TADnAD) · k = 0

[
∑

Mx = 0] (2.1j× TBCnBC) · i + (2.1j× TADnAD) · i− 50g × 2.1 = 0

TBC = 625 N, TAD = 1024 N

Now the moment equilibrium about y-axis will give the supporting moment
at the double U-joint.

[
∑

My = 0] M + 50g × x + (1.5i× TBCnBC) · j = 0

M = 365.66− 490.5x

Finally, the force equilibrium along the x- and y- axis will help determine the
remaining supporting forces.

[
∑

Fy = 0] Oy + TBCnBC · j + TADnAD · j = 0, Oy = 1429 N

[
∑

Fx = 0] Ox + TBCnBC · i + TADnAD · i = 0, Ox = 410 N

O =
√

O2
x + O2

y + O2
z = 1487 N
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4.1 Introduction

When two objects are in contact, the forces of action and reaction between con-
tacting surfaces are developed. To the mutual contacting surface, these forces
have their components both in the tangential and normal directions. Force com-
ponent in the tangential direction is known as the friction force. Whenever a
tendency exists for one contacting surface to slide along another sur-
face, the developed friction force is always in the direction opposing
this tendency.

In some systems, friction is undesirable because it just plainly changes the
system characteristics from the required behavior. In particular, where the slid-
ing motion between parts occurs, the developed friction force results in a loss
of energy. However, in many cases, friction instead functions the systems. For
example, many mechanisms employ friction as an extra force to retain their equi-
librium states.

4.2 Types of Friction

4.3 Dry Friction

4.3.1 Mechanism of Friction

To understand the friction phenomena, which is important in further problem
analysis, let us consider fig. 4.1. A block of mass m slides on a planar surface
with the applied pulling force P , as shown in fig. 4.1(a). To begin the analysis,
the free body diagram is drawn, depicted in fig. 4.1(b). The reaction force R
the ground exerted on the block is decomposed into the normal and tangential
components, according to the virtual tangent plane at the contact. The tangential
component or the friction force, denoted F , is related to the normal force N by
the trigonometrical relationship

F = N tan α (4.1)

α, called the friction angle, is the angle the resulting reaction force deviated
from the normal direction. This angle can be determined approximately by the
experiment. The value depends largely on the materials of two contacting surface.
Fig. 4.1(c) explains why the parameter is at best obtained as an estimated value.
Local geometry of the contact point determines each infinitesimal reaction force
which adds up vectorially to give the gross reaction force R. A multitude of
parameters dictate the value of the macro friction angle α, which therefore is the
source of uncertainties.

Relationship of the friction force F and the applied force P is plotted in
fig. ??(d). There are three regimes of the friction force development. In the
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Figure 4.1: Mechanism of the friction ([1], pp. 341)

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/friction_mechanism.eps


4.3 Dry Friction 114

beginning of the application, the friction force equally catch up the applied force
as shown by the 45◦ straight line dictating F = P . During this phase, the
block does not move at all. This can be understood by determining the resulting
force acting along the tangential direction. The force is zero which indicates the
equilibrium status and hence no motion of the block.

The first regime lasts until the applied force P reaches

Fmax = µsN (4.2)

for which the graph enters the second regime. µs is the static coefficient of friction.
By comparing eq. 4.1 and 4.2,

µs = tan αs (4.3)

Hence the coefficient of friction depends on the material of the mating surfaces.
At this point, the block is about to move, called the impending motion, be-
cause the current applied force is the largest force resistable by the physically
largest generated friction force Fmax, governed by eq. 4.2. From the equation,
the maximum friction force depends on the normal force and the static coeffi-
cient of friction. The implication of the impending motion is the validity of the
equilibrium condition and the friction force reaches the maximum value.

If the applied force is further increased, the block is no longer in the equilib-
rium. That is the frictional force is now not enough to hold the block at rest.
From the unbalanced resulting force, the block will then start moving in the di-
rection of the applied force. Moreover, the magnitude of the friction force itself
is known to be dropped off from the maximum value Fmax. The new value of the
friction in the third regime is

Fk = µkN (4.4)

where µk is the kinetic coefficient of friction determined experimentally. Its value
is usually less than µs and also depends on the material types of the contact
surfaces. Practically, the friction force decreases as the relative velocity of the
mating surfaces increases.

In summary, there are three regions of the friction force development in tran-
sitioning of the object from rest to motion. These are

1. No Motion is the region up to the point of slippage or impending motion.
Friction force is determined by the equations of equilibrium because the
system is in equilibrium. When the motion is not impending, F < Fmax.

2. Impending Motion is the moment where the body is on the verge of slipping.
Static friction force reaches the maximum value. For a given pair of mating
surfaces, F = Fmax = µsN .

3. Motion The body starts moving in the direction of the applied force. Here,
friction force drops to a lower value called kinetic friction F = µkN . It will
drop further with higher velocity.
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Figure 4.2: Friction cone ([1], pp. 344)

4.3.2 Friction Cone

The friction coefficient reflects the roughness of a pair of mating surfaces. The
smaller the value, the smoother the surfaces and the easier to move relatively to
each other. Furthermore, this coefficient has another interpretation according to
eq. 4.3. The angle αs restricts the deviation angle that the actual reaction force
R made with the normal direction. See fig. 4.2. The direction of the reaction
force R is specified by tanα = F/N . It will lie inside the so called cone of
friction, because any valid friction force is limited by Fmax = tan µsN . When the
friction force reaches the maximum value, i.e. tan α = tanαs = µs, the reaction
force R lies on the surface of the static cone. In other words, the direction of
the reaction force is known in case of the impending motion. This is helpful in
solving the problem as will be illustrated in some examples. Corollarily, there is
the smaller kinetic cone of friction to guide the reaction force direction when the
objects’ surfaces are slipping relative to each other. The relationship becomes
tan α = tan αk = µk. Note the friction force is independent of the apparent or
projected area of contact.

4.3.3 Solving the Dry Friction Problems

Here the general approach in solving the dry friction problems will be given.
It involves the identification of the status of the motion that influences the
determination of the friction force.

Condition of impending motion is known to exist The body is in
equilibrium and on the verge of slipping. The friction force is therefore the
maximum static friction F = µsN .

Relative motion is known to exist In this case the friction force is
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the kinetic friction force F = µkN .

Unknown status of the problem This is the difficult case. The prob-
lem is tackled by first assuming the system is in static equilibrium and using the
equilibrium condition to determine the required friction force F . The result is
then investigated to conclude the validity of the equilibrium assumption:

1. F < µsN indicates that the friction force for the assumed equilibrium
condition can be provided and so the body is in static equilibrium as firstly
assumed.

2. F = µsN implies the maximum friction force is required. The assumed
static equilibrium condition still holds and so the motion impends.

3. F > µsN This is impossible because the surface cannot support more fric-
tion than µsN . Consequently, the equilibrium assumption is invalid and
motion occurs instead. This makes the friction force be directed by the
kinetic friction force; F = µkN . And the equilibrium conditions are no
longer held. The motion is accelerated.

Using the above guidelines, the following representative problems are now
presented and solved.

Example 4.1 ([1], SP. 6/1) Determine the maximum angle θ which the ad-
justable incline may have with the horizontal before the block of mass m begins
to slip. The coefficient of static friction between the block and the inclined
surface is µs.

Solution: From the given statement, the block is on the verge of slipping.
Therefore the friction force is the maximum value F = µsN acting upward the
incline. According to the free body diagram in fig. 4.4, the following equilibrium
equations can be formulated.

[
∑

Fy = 0] N −mg cos θ = 0

[
∑

Fx = 0] µsN −mg sin θ = 0

From the above equations, it can be concluded that

µs = tan θ or θ = tan−1 µs

Another approach in solving this problem can be done by employing the
concept of the friction cone. From the right free body diagram shown in fig. 4.4,
the equilibrium simply requires the balance between the reaction force R and
the weight W . Recognizing that the reaction force will make the angle of αs =
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Figure 4.3: Example 4.1 ([1], pp. 346)

tan−1 µs to the normal line when the motion impends, and noting that from the
geometry α = θ, it then can be concluded that

θ = tan−1 µs

Example 4.2 ([1], SP. 6/2) Determine the range of values which the mass mo

may have so that the 100 kg block shown in the figure will neither start moving
up the plane nor slip down the plane. The coefficient of static friction for the
contact surface is 0.30.

Solution: From the setup configuration, if the counterweight is increased
too much, the block will start sliding upward. On the contrary, if the coun-
terweight is decreased too much, the block will start sliding downward, lifting
the balance upward. The problem asks the maximum and the minimum weight
which still neither makes the block sliding upward or downward. This implies
the system in question is on impending. Hence the magnitude of the friction
force must be F = Fmax = µsN . The situations will be splitted into two cases;
the block starts moving upward and downward, respectively. In both cases,
however, forces in the normal direction are the same. The normal force can be
determined first by recalling the equilibrium condition in the normal y-direction.
From fig. 4.6,

[
∑

Fy = 0] N − 100g cos 20 = 0

N = 922 N
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Figure 4.4: Solution to example 4.1 ([1], pp. 346)

Case I : Maximum value of mo. Block starts moving upward. The resist-
ing friction force pointing downward (fig. 4.6 left):

[
∑

Fx = 0] mog − µsN − 100g sin 20 = 0

mo = 62.4 kg

Case II : Minimum value of mo. Block starts moving downward. The re-
sisting friction force pointing upward (fig. 4.6 right):

[
∑

Fx = 0] mog + µsN − 100g sin 20 = 0

mo = 6.0 kg

Therefore, mass mo must be in the range of

6.0 ≤ mo ≤ 62.4 kg

so that the block will not start moving.

Example 4.3 ([1], SP. 6/3) Determine the magnitude and direction of the
friction force acting on the 100 kg block shown if, first, P = 500 N and, second,
P = 100 N. The coefficient of static friction is 0.20, and the coefficient of kinetic
friction is 0.17. The force are applied with the block initially at rest.

Solution: After reading the problem statement, the motion status of the
block cannot be deduced. The problem falls in the unknown status case and the
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Figure 4.5: Example 4.2 ([1], pp. 346)

Figure 4.6: Solution to example 4.2 ([1], pp. 346)
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approach is to assume the system is in static equilibrium condition. Additionally,
it is not known whether the block is likely to move upward or downward the
incline. Since this information is not known, it will be assumed as well.

P = 500 N Compared to the case of P = 100 N, the tendency of the
block’s motion is assumed to be upward. Therefore the friction direction is
assumed downward. After drawing the free body diagram as depicted in fig. 4.8,
the equilibrium conditions are applied:

[
∑

Fy = 0] N − 500 sin 20− 100g cos 20 = 0

N = 1092.85 N

[
∑

Fx = 0] 500 cos 20− F − 100g sin 20 = 0

F = 134.3 N

The maximum supportable friction force is

Fmax = µsN = 0.2× 1092.85 = 218.6 N

The required friction force for the equilibrium condition is less than the maximum
value. Therefore the friction force is 134.3 N downward and the block is still at
rest.

P = 100 N Compared to the case of P = 500 N, the tendency of the
block’s motion is assumed to be downward. Therefore the friction direction is
assumed upward. After drawing the free body diagram as shown in fig. 4.8, the
equilibrium conditions are applied:

[
∑

Fy = 0] N − 100 sin 20− 100g cos 20 = 0

N = 956.04 N

[
∑

Fx = 0] F + 100 cos 20− 100g sin 20 = 0

F = 241.55 N

The maximum supportable friction force is

Fmax = µsN = 0.2× 956.04 = 191.21 N

The required friction force for the equilibrium condition is greater than the max-
imum value. Therefore this required friction force cannot be fulfilled. The equi-
librium assumption is thus invalid and the block is moving downward instead.
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Figure 4.7: Example 4.3 ([1], pp. 347)

Figure 4.8: Solution to example 4.3 ([1], pp. 347)

The friction force then becomes the kinetic friction force in the upward direction
of which its magnitude is

F = µkN = 0.17× 956.04 = 162.5 N

Example 4.4 ([1], SP. 6/4) The homogeneous rectangular block of mass m,
width b, and height H is placed on the horizontal surface and subject to a
horizontal force P which moves the block along the surface with a constant
velocity. The coefficient of kinetic friction between the block and the surface is
µk. Determine
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(a) the greatest value that h may have so that the block will slide
without tipping over and

(b) the location of a point C on the bottom face of the block through which
the resultant of the friction and normal force acts if h = H/2.

Solution: In the first question, as the point of application of the applied
force P increases, the block will be more likely about to tip over. When the
block is about to tip over, the resultant supporting force from the ground must
be acting through the last contact point at the far corner of the block, labeled as
point A in fig. 4.10. For this problem, the block is being moved with a constant
velocity. Therefore the developed friction is the kinetic friction force. From the
friction cone viewpoint, the resultant force R must be such that its direction is
forming the angle

θ = tan−1 µk

with the normal direction. Since the block is in equilibrium (moving with constant
velocity), all three forces acting on the block must meet at the common point
denoted as B in the figure. The location of this point will dictate the height h of
the applied force P . Because the ground reaction force must pass through point
A and B, the following geometric relationship can be written:

b/2h = tan θ = µk

Hence the greatest value of h is determined as

h = b/2µk

For the second question, the height of the point of application is fixed to be
h = H/2. Nevertheless, the system is still in equilibrium and hence three forces
acting on the block must also meet at the common point. In this case the point is
known; it is the center of gravity point G. Since the ground reaction force must
pass through this point and its direction must be such that

θ = tan−1 µk

the location of the point C on the bottom face through which the resultant
reaction force acts must satisfy the following relationship:

x/ (H/2) = tan θ = µk

In other words, the location of the point C from the middle vertical line of the
block is

x = µkH/2
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Figure 4.9: Example 4.4 ([1], pp. 348)

Figure 4.10: Solution to example 4.4 ([1], pp. 348)
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Example 4.5 ([1], SP. 6/5) The three flat blocks are positioned on the 30◦

incline as shown, and a force P parallel to the incline is applied to the middle
block. The upper block is prevented from moving by a wire which attaches it
to the fixed support. The coefficient of static friction for each of the three pairs
of mating surfaces is shown. Determine the maximum value which P may have
before any slipping takes place.

Solution: From the arrangement of the blocks, the 30 kg block cannot be
moved. Only either the 50 or the 40 kg block, or together both blocks can be
moved. However the applied force P acts at the 50 kg block, it is unlikely that
the 40 kg block will move alone. Therefore there will be only 2 possible cases:
either the 50 kg block alone or the 50 and 40 kg blocks will move together as
one unit.

After drawing the free body diagram shown in fig. 4.12, the equilibrium
condition in the normal direction of each block requires

[
∑

Fy = 0] N1 − 30g cos 30 = 0, N1 = 254.87 N

N2 −N1 − 50g cos 30 = 0, N2 = 679.66 N

N3 −N2 − 40g cos 30 = 0, N3 = 1019.5 N

The maximum friction forces possible developed at each mating surface there-
fore are

F1max = µsN1 = 76.46 N
F2max = µsN2 = 271.86 N
F3max = µsN3 = 458.8 N

The normal force will next be used to determine the friction forces right before
any slippage as follow.

50 kg-block tends to move alone This implies F1 and F2 must be F1max

and F2max. The block will not slip had either one alone reaches the maximum
value. Consider the 40 kg-block.

[
∑

Fx = 0] F2 − F3 + 40g sin 30 = 0

F3 = 468.06 N > F3max

which is not possible. Therefore the 40 kg-block cannot stay still and the
requirement of no slippage cannot be satisfied. Hence this case will not happen.

50 and 40 kg-block tend to move together If this would happen, F1 and F3

must be F1max and F3max. Both blocks as an integral unit will not slip had either
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Figure 4.11: Example 4.5 ([1], pp. 349)

one alone reaches the maximum value. Consider the 40 kg-block.

[
∑

Fx = 0] F2 − F3 + 40g sin 30 = 0

F2 = 262.6 N < F2max

which is possible. Therefore the 50 and 40 kg-block will not slip relative
to each other and be at rest. To determine the maximum value of the applied
force P , apply the equilibrium condition at the middle block.

[
∑

Fx = 0] P − F1 − F2 + 50g sin 30 = 0

P = 93.8 N

Example 4.6 ([1], Prob. 6/6) The light bar is used to support the 50 kg block
in its vertical guides. If the coefficient of static friction is 0.30 at the upper and
0.40 at the lower end of the bar, find the friction force acting at each end for
x = 75 mm. Also find the maximum value of x for which the bar will not slip.

Solution: The most distinct aspect of the system is that the light bar is a
two-force member. Therefore, if it is in equilibrium, the reaction forces acted
at both ends must be equal, opposite, and acting along the bar’s longtitudinal
direction, depicted in fig. 4.14. Decomposing the reaction force into the normal
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Figure 4.12: Solution to example 4.5 ([1], pp. 349)

and friction force, the normal force must be such that it supports the weight of
the 50 kg-block.

[
∑

Fy = 0] N − 50g = 0, N = 490.5 N

Because the required situation of this problem is static equilibrium, the de-
veloped friction must not exceed the maximum value in addition to the two-force
member equilibrium condition. The alternative view to this constraint is that
the direction of the reaction force must reside in the static friction cone. Hence
the angle that the reaction force on each end made with the normal (vertical)
direction cannot exceed

φsA = tan−1 µsA = 21.8◦

φsB = tan−1 µsB = 16.7◦

Consider the case where the lower end of the bar is displaced by x = 75 mm.
Direction of the reaction force is along the propped bar. By geometry, the angle
the reaction force made with the normal direction is

θ = sin−1 (75/300) = 14.5◦ < φsB < φsA

The reaction force R is inside the static friction cone and therefore the system
is in equilibrium. The friction force can then readily be determined as

F = N tan θ = 126.6 N

To find the maximum value of x for which the bar will not yet slip, one of the
reaction forces must be on the static friction cone surface. That reaction force
is at the upper end where the coefficient of friction is lower. The lower reaction
force will still be inside the static friction cone. At B, the direction of the reaction
force, and so the bar, must then be such that

x/300 = sin φsB
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Figure 4.13: Example 4.6 ([1], pp. 351)

Figure 4.14: Solution to example 4.6
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Hence the maximum value of x will be

x = 300 sin 16.7 = 86.2 mm

Example 4.7 ([1]) Find the tension in the cable and force P that makes the 15
kg lower block

(a) to start sliding downward
(b) to start sliding upward

Solution: This problem is rather simple because the status of the motion
is known, i.e. impending motion. Therefore the developed friction force
must reach the maximum value. For both cases, the free body diagrams in
fig. 4.16 reveal the same force in the normal direction. Imposing the equilibrium
condition, the following equations can be written:

[
∑

Fn = 0] N1 = 8g cos 20 = 73.75 N

N2 −N1 − 15g cos 20 = 0, N2 = 212 N

Consequently, the maximum friction forces supportable at each mating pair
are

F1max = 0.3N1 = 22.12 N
F2max = 0.4N2 = 84.81 N

a) P pulling down The 15 kg-block impends to slide downward. Because the
motion impends, the equilibrium equation of each block along the tangential
direction can be set. The applied force P and the cable tension T can then be
determined.

[
∑

Ft = 0] P − F1max − F2max + 15g sin 20 = 0, P = 56.6 N

F1max + 8g sin 20− T = 0, T = 49 N

b) P pushing up There are two possible situations. Either the 15 & 8 kg-
blocks impend to slide upward together or the 15 kg-block impends to slide
upward alone. If both blocks are about to go together, the cable will get slack.
This implies T = 0 N. Using the equilibrium condition on the 8 kg-block, this
requires the resisting friction force of

[
∑

Ft = 0] 8g sin 20− F1 = 0, F1 = 26.84 N

which is greater than the maximum value of F1max. Consequently, this
case cannot happen and therefore the other case that the 15 kg-block impend
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Figure 4.15: Example 4.7 ([1])

to slide upward alone will be realized instead. Using the equilibrium conditions
along the tangential direction on each block, the applied force P and the cable
tension T can be determined.

[
∑

Ft = 0] −P + F1max + F2max + 15g sin 20 = 0, P = 157.3 N

−T − F1max + 8g sin 20 = 0, T = 4.72 N

Example 4.8 ([2], Prob. 6/29) The uniform slender rod of mass m and length
L is initially at rest in a centered horizontal position on the fixed circular surface
of radius R = 0.6L. If a force P normal to the bar is gradually applied to its
end until the bar begins to slip at the angle θ = 20◦, determine the coefficient of
static friction.

Solution: The status of the bar is impending motion. From the no slip
condition, the distance between the current and the initial contact points of the
bar must be equal to the length of the curve traced on the surface, which is

[a = θr] a =
(

20× π
180

)

R = πR/9

After drawing the free body diagram and recognizing the angle α the reaction
force made with the normal direction is also the angle of the static friction cone,
as shown in fig. 4.18, the coefficient of static friction can be determined as

µs = tanα =
L/2− πR/9

L/ (2 tan 20)
= 0.211
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Figure 4.16: Solution to example 4.7

Example 4.9 ([2], Prob. 6/32) The three identical rollers are stacked on a
horizontal surface as shown. If the coefficient of static friction µs is the same
for all pairs of contacting surfaces, find the minimum value of µs for which the
rollers will not slip.

Solution: After careful consideration of the sketch in fig. 4.19, if the rollers start
slipping, the lower rollers tend to roll out at the upper contacts while they tend
to slide out at the lower contacts. The top most roller will then start falling
down. This described motion is shown in fig. 4.20. The slipping will occur if
one or more contacts of the lower rollers impend to slip. To understand the
phenomenon, the free body diagram of the lower left roller is drawn as depicted
in fig. 4.20. Applying the moment equilibrium at point O,

[
∑

MO = 0] FA = FB

From the figure, it can be concluded that NA < NB. Therefore FAmax <
FBmax. Consequently, FA will reach the limit value before FB. This implies
slipping will occur first at A and so FA = FAmax. FB, which may be less than
FBmax, will be determined by the equilibrium equation.

The roller is recognized as a three-force member. Therefore the line of action
of these three forces must intersect at a unique point for the system to be in
equilibrium. The only possible meeting point is B. In addition, since the reaction
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Figure 4.17: Example 4.8 ([2], pp. 362)

Figure 4.18: Solution to example 4.8
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Figure 4.19: Example 4.9 ([2], pp. 363)

force at A reaches the limit, RA must be making the angle tan−1 µs with NA. From
the geometry of the triangle OAB sketched in fig. ??, it can be stated that

tan−1 µs = 15◦

As a result, the minimum value of µs to guarantee the stacked rollers to retain
their equilibrium is

µs = tan 15 = 0.268

Example 4.10 ([2], Prob. 6/41) The industrial truck is used to move the solid
1200 kg roll of paper up the 30◦ incline. If the coefficients of static and kinetic
friction between the roll and the vertical barrier of the truck and between the
roll and the incline are both 0.40, compute the required tractive force P between
the tires of the truck and the horizontal surface.

Solution: The moving paper roll is making contacts with the vertical bar-
rier of the truck and the incline. This problem is difficult because it is not clear
from the statement how the roll is moving. After drawing the free body diagram
of the roll shown in fig. 4.22, three possibilities are listed.

1. A and B both slip

2. Only B slips

3. Only A slips

Each case has been investigated with the assumption of dynamical equilib-
rium. After the calculation, only the last case — i.e. the roller slips at A —
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Figure 4.20: Solution to example 4.9

Figure 4.21: Example 4.10 ([2], pp. 365)
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Figure 4.22: Solution to example 4.10

is viable. For this case, because the roll slips at A, the kinetic friction force is
determined as

FA = 0.4NA

Applying the equilibrium conditions to the roller, other unknown forces can
be determined as follow:

[
∑

MO = 0] FB = FA = 0.4NA

[
∑

Fx = 0] NA − FB cos 30−NB sin 30 = 0, NB = 1.307NA

[
∑

Fy = 0] −0.4NA − 1200g − FB sin 30 + NB cos 30 = 0

NA = 22.1 kN, NB = 28.9 kN, FB = 8853 N < 0.4NB

which is an indication that the required friction force of FB is supportable. By
observation of the equilibrium truck, the required tractive force P must balance
the normal force NA. Therefore,

P = 22.1 kN →
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5.1 Introduction

In reality, forces are applied over a region of which often its area is negligible.
When forces are applied over a region whose dimensions are not negligible com-
pared with other pertinent dimensions, we must account for the actual manner
in which the force is distributed by summing up the effects of the distributed
force over the region. For this purpose, we need to know the intensity of the force
at any location and we will use the integration to determine their total effect.
Figure 5.1 are common engineering examples of the distributed forces.

Figure 5.1: Some examples of the distributed forces ([1], pp. 237)

5.2 Center of Mass

In this section, we study the method to determine the location of the center of
gravity, the center of mass, and the center of volume. The principle of moment,
i.e.

“The sum of the moments is equal to the moment of the sum.”

is basically employed to determine these locations.

5.2.1 Center of Gravity

The center of gravity (C.G.) is the point where the resultant gravitational force
W acts. It is determined from the principle of moment:

“Moment of the resultant gravitational force W about any axis is
equal to the sum of the moments about the same axis of the
gravitational force dW acting on all particles of the body.”

Most of the objects subject to the earth gravity can be safely assumed that the
intensity of the earth’s force field over the body is uniform. The other reasonable
assumption is that the field of force due to the gravitational attraction is parallel.
Applying these assumptions to the principle of moment simplifies the derivation
of the C.G. because the cross product degenerates to a simple multiplication.
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The position of the C.G. is then

rCG =

∫

r dW
∫

dW
(5.1)

where r is the position vector of the particle corresponding to the gravitational
force dW . rCG is the position vector of the C.G. Both may be described in any
coordinate frame such as the rectangular coordinate frame, for which the case r
can be written as xi + yj + zk.

5.2.2 Center of Mass

The center of mass (C.M.) is the point where the total mass of the object is
visually concentrated. It is again determined from the principle of moment. C.M.
is independent of the gravitational effect. It is a unique property of the object,
depending on its shape and material.

For simplification in the derivation of the C.M., apply the same assumptions
as above; uniform intensity of the earth’s force field over the body and parallel
field of force due to the gravitational attraction. The position of the C.M. is then

rCM =

∫

r dm
∫

dm
(5.2)

where r is the position vector of the particle corresponding to the infinitesimal
mass dm. rCM is the position vector of the C.M. Note that C.M. is the same as
C.G. had the gravity field be treated as uniform and parallel.

5.2.3 Center of Volume

The center of volume (C.V.) is the point where the total volume of the object is
visually concentrated. The principle of moment is also used here to determine the
point. C.V. is independent of the density of the material. It is a unique property
of the shape, depending on its geometry only.

To simplify the derivation of the C.V., we assume constant intensity of the
earth’s force field over the body and parallel field of force due to the gravitational
attraction. The position of the C.V. is then

rCV =

∫

r dV
∫

dV
(5.3)

where r is the position vector of the particle corresponding to the infinitesimal
volume dV . rCV is the position vector of the C.V. dV may be further elaborate
as dxdydz had the rectangular coordinate frame been used. Note that C.V. will
be the same point as C.M. if the density (mass intensity) is uniform over the
volume.
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Figure 5.2: Examples of symmetric objects ([1], pp. 239)

Sometimes it is advantageous to recognize the symmetry of the object. This
will help reducing the effort in determining the C.V. because there will be some
relations among the coordinates. See fig. 5.2 for the examples. Normally, the
C.V. will lie on the symmetric features of the object. For example, the cone
in fig. 5.2a has the axis of symmetry. So the C.V. will be on the axis. Half
of the cone has the plane of symmetry as shown in fig. 5.2b. Hence the C.V.
must be somewhere on the plane. Or the half ring shape object has two planes
of symmetry. Therefore the C.V. must be on the intersecting line of these two
planes, as shown in fig. 5.2c. Acknowledging these facts eliminate the need to
determine some centroidal coordinates.

If the body is made from the homogeneous material, the above discussion can
be extended to the determination of the C.M. That is, it will lie on the symmetric
features of the object as well. In fact, it will be the same point as the C.V.

5.3 Centroids (Line, Area, Volume)

Another name of the C.V. is the centroid. It is purely the geometrical (shape)
property of the body since any reference to its mass properties has disappeared.
We can divide the determination of the centroid into the case for the line, area,
and volume.
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Figure 5.3: Determination of the line centroid ([1], pp. 240)

Figure 5.4: Determination of the area centroid ([1], pp. 240)

Line We assume the cross sectional area is constant over the length. The
centroid of the line is determined as

rC =

∫

rc dL
∫

dL
(5.4)

Note that the centroid may not always be on the line. See fig. 5.3.

Area We assume the thickness is constant over the entire area. The cen-
troid of the area is determined as

rC =

∫

rc dA
∫

dA
(5.5)

∫

rc dA is called the first moment of area. Note that the centroid may not always
be on the surface. See fig. 5.4.

Volume As studied in the previous section, the centroid of the volume
can be determined as

rC =

∫

rc dV
∫

dV
(5.6)
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The centroid does not need to always be inside the volume.

Guidelines Here are some guidelines in choosing the differential elements
and setting up the integrals to determine the centroid.

1. Order of element Usually, we prefer first order differential element to higher
order to avoid multiple integration. For examaple, we can determine the
area of the shape in fig. 5.5a in two different ways:

A =

∫

ldy, l = l (y)

or

A =

∫∫

dxdy

However, the first method is preferable. Another example is to determine
the volume of the object in fig. 5.5b.

V =

∫

πr2dy, r = r (y)

or

V =

∫∫∫

dxdydz

However, the first method is preferable because it is more difficult in this
case to determine the limit of integration of each variable.

2. Continuity We prefer choosing the element that can be integrated in one
continuous operation to cover the whole object. The area in fig. 5.6 can be
determined by integrating with respect to x or y. Yet we recommend the
approach in fig. 5.6b where the area can be determined by evaluating just
one integral expression. The difficulty is hidden in expressing the length l
as a function of the integration variable y.

3. Higher order terms Higher order terms may be dropped compared with
lower order terms. This can be done without introducing any error because
in the limit the area or volume of the differential element of higher order
terms becomes virtually zero. Figure 5.7 illustrates the evaluation of the
area. With too much worry, one may be tempted to determine the area
of the given shape by taking into account the small area on top of each
column with the triangular area as well:

A =

∫

ydx +

∫

1

2
dxdy =

∫
(

y +
1

2
dy

)

dx =

∫

ydx

Since 1
2
dy is far less than y, we can safely ignore it. Hence the expression

for the area considering the infinitesimal triangles eventually becomes the
same as if they have not been included.

Chulalongkorn University Phongsaen PITAKWATCHARA



5.3 Centroids (Line, Area, Volume) 141

Figure 5.5: Select the differential element, of which the volume is known, to be
as large as possible ([1], pp. 241)

4. Choice of coordinates It is advised to choose the coordinate system describ-
ing the area or volume as appropriate for the particular shape of the object.
If the body is of rectangular shape, we should use rectangular coordinates.
However, if its shape is circular, we should employ polar coordinates in-
stead. If the boundary is described with rectangular coordinates, as shown
in fig. 5.8a for example, the area should be determined from

A = xoyo −
∫ yo

0

xdy

On the other hand, if the boundary is explained using the polar coordinates,
as in fig. 5.8b, the area should be calculated as

A =

∫ θo

0

1

2
r2dθ

5. Centroidal coordinate of the element Since we usually use the coordinate of
the centroid of the element for the moment arm in setting up the moment
of the differential element, it is recommended to divide the object in the
manner that the centroid of these differential elements can be expressed
easily in terms of the selected coordinates. It may be recognized immedi-
ately that the centroid of the differential element in fig. 5.9a is at the middle
point of the strip. For the case of fig. 5.9b, we may look up the standard
table of moment of inertia and centroid for the location of the centroid of
the differential element.
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Figure 5.6: If possible, divide the object in the manner that can be integrated in
one continuous operation to cover the whole body ([1], pp. 241)

Example 5.1 ([1], SP. 5/3) Locate the centroid of the area of a circular sector
with respect to its vertex.

Solution: There are several ways to determine the centroid depending on
how to divide the area into differential elements. Here, two solutions are
presented.

Infinitesimal concentric ring The area is divided into infinitesimal concentric
rings as shown in the left of fig. 5.11. In this given area, we observe the symmetry
around the horizontal line. Therefore, it can be conclude that the y-coordinate
of the centroid is

Y = 0

Now the x-coordinate of the centroid, X, will be determined. The infinitesimal
area of a concentric ring located at ro, as highlighted in red, is

dA = 2αrodro

The centroid of this ring can be determined as a separted problem of finding the
centroid of the partial circular ring of radius ro and of angle 2α. As a result, this
ring has the centroid being located at

xc =
ro sin α

α

Recall the equation to determine the centroid for x-coordinate. Therefore,
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Figure 5.7: The higher order terms can safely be omitted from the integrand ([1],
pp. 241)

Figure 5.8: Select the coordinates that suit to the shape and boundaries of the
object ([1], pp. 242)

[

XA =
∫

xcdA
]

X
∫ r

0
2αrodro =

∫ r

0
ro sin α

α
2αrodro

X =
2r sin α

3α

Infinitesimal sector Here the area is divided into infinitesimal sectors as shown
in the right of fig. 5.11. Again, from the observation, Y = 0. Only the x-
coordinate of the centroid, X, will be determined. The infinitesimal area of a
sector at the angle θ, as highlighted in red, is

dA =
1

2
r (rdθ)

The centroid of this ring can be determined as a separted problem of finding the
centroid of the infinitesimal sector of radius r located at the angle θ. As a result,
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Figure 5.9: Divide the object in the manner that the centroid be expressed easily
in terms of the selected coordinates ([1], pp. 242)

Figure 5.10: Example 5.1 ([1], pp. 245)

the sector has the centroid being located at

xc =

(

2

3
r

)

cos θ

Recall the equation to determine the centroid for x-coordinate. Therefore,

[

XA =
∫

xcdA
]

X
∫ α

−α
1
2
r2dθ =

∫ α

−α
2
3
r cos θ × 1

2
r2dθ

X =
2r sin α

3α

Example 5.2 ([2], Prob. 5/23) Locate the centroid of the area shown in the
figure by direct integration.

Solution: It can be observed that the given area is symmetric about the
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Figure 5.11: Solution to example 5.1 ([1], pp. 245)

line y = a− x. Therefore the centroid will lie on this line. This implies

Y = a−X

The shaded area can be viewed as the summation of the horizontal strips.
Each strip is built from subtracting the horizontal strip of the length a with
the differential sector located at the corresponding angle θ. These strips will be
evaluated through the whole range of θ varying from 0 to π/2.

Each infinitesimal area is then

dA = ady − 1

2
a (adθ)

Transform the y- to θ- coordinate to perform the integration under the same
variable. We have the following relationship:

y = a− a cos θ

dy = a sin θdθ

The x-coordinate centroid of these differential elements can be observed as

xc1 = a/2

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/sol_5_1.eps


5.3 Centroids (Line, Area, Volume) 146

Figure 5.12: Example 5.2 ([2], pp. 258)

xc2 =
2

3
a sin θ

for the horizontal and the sector strips, respectively. Now it is ready to determine
the x-coordinate centroid of this area.

[

XA =
∫

xcdA
]

X

∫ π/2

0

a2

(

sin θ − 1

2

)

dθ =

∫ π/2

0

a

2
× a2 sin θdθ −

∫ π/2

0

(

2

3
a sin θ

)

× 1

2
a2dθ

X =
2a

3 (4− π)

Recall the centroid location on the line y = a − x. Hence, the y-coordinate
centroid of the area is

Y = a−X =
(10− 3π) a

3 (4− π)

Example 5.3 ([2], Prob. 5/35) Determine the coordinates of the centroid of the
volume obtained by revolving the shaded area about the z-axis through 90◦ angle.

Solution: This revolved volume is symmetric about the vertical plane making
45◦ with the x-axis. Therefore X = Y .

The given volume may be dissected as shown in fig. 5.15. The y-coordinate
may be chosen as the integration variable varying from 0 to a. The circular edge
in the yz plane has the following relation:

y2 + (z − a)2 = a2

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_5_2.eps


5.3 Centroids (Line, Area, Volume) 147

Figure 5.13: Solution to example 5.2

Or in the first quadrant,
z = a−

√

a2 − y2

Therefore, we can express the differential volume shown in fig. 5.15 in terms
of the y-coordinate variable as

dV = zdy × 2πy

4
=

π

2

(

a−
√

a2 − y2
)

ydy

Next is to determine the centroidal coordinates of this differential volume.
The z- centroidal coordinate, zc, is simply half of the height, i.e.

zc =
z

2
=

a−
√

a2 − y2

2

The x- centroidal coordinate, xc, can be determined by using the result of Ex. 5.1.
Hence

xc =
y sin (π/4)

π/4
cos (π/4) = 2y/π

which, by symmetry, is the same as yc.
Now, it is straightforward to determine the centroidal coordinates of the

given volume using the moment equation.

[

XV =
∫

xcdV
]

X

∫ a

0

π

2

(

a−
√

a2 − y2
)

ydy =

∫ a

0

2y

π
× π

2

(

a−
√

a2 − y2
)

ydy

X =

(

4

π
− 3

4

)

a = Y
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Figure 5.14: Example 5.3 ([2], pp. 261)

[

ZV =
∫

zcdV
]

Z

∫ a

0

π

2

(

a−
√

a2 − y2
)

ydy =

∫ a

0

a−
√

a2 − y2

2
× π

2

(

a−
√

a2 − y2
)

ydy

Z =
a

4

Example 5.4 ([2], Prob. 5/40) Locate the center of mass G of the steel half ring.

Solution: It is readily seen that the planes of symmetry of the steel half
ring is the middle vertical plane and the zero horizontal plane. Therefore the
centroid lies on the intersection line of these two planes. Consequently, only the
distance r is needed to be determined. To do so, the differential volume shaded
in red, as shown in fig. 5.17, is selected. If the x- coordinate varies from −a to
a, the whole steel half ring is addressed. The other coordinates then need to be
expressed as the functions of x variable. From the circular-shape cross section
along the ring, we can write

x2 + y2 = a2

Or
y =
√

a2 − x2

for the upper half of the circle. The differential volume can now be expressed as

dV =
(

2
√

a2 − x2dx
)

× π (R− x)

Using the result of Ex. 5.1, the centroid of the differential volume is located
at

rc =
(R− x) sin (π/2)

π/2
=

2

π
(R− x)
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Figure 5.15: Solution to example 5.3

The center of mass G of the steel half ring can now be determined by
substituting the above quantities into the moment equation:

[

rV =
∫

rcdV
]

r

∫ a

−a

2π (R− x)
√

a2 − x2 dx =

∫ a

−a

2

π
(R − x)× 2π (R− x)

√
a2 − x2 dx

r =
a2 + 4R2

2πR

5.4 Composite Bodies and Figures

Figure 5.18 is an example of the complicated object that its centroid cannot be
determined easily by analytical integration approach. Fortunately, we may be
able to determine it by dividing the original object into sub-parts, for which
their centroids can be determined, recognize, or look up more easily. This is
the discrete version in finding the centroid compared to the continuous one by
dissecting the object into infinitesimal elements. Here we divide the object into
smaller ones with known centroids at convenience, as depicted conceptually in
fig. 5.18, then the centroid of the complete object may be determined by recalling
the principle of moment. However, for this case, the addition of the moment is
done discretely using the summation rather than the integration technique.

Summation seems to be more primitive than integration. Therefore we may
employ this technique to numerically evaluate the volume and centroid of any
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Figure 5.16: Example 5.4 ([2], pp. 262)

Figure 5.17: Solution to example 5.4
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Figure 5.18: The centroid of a complex body may be determined discretely ([1],
pp. 256)

object with arbitrary shape, much like the numerical integration techniques per-
formed by mathematical programs to solve the integration that has no analytical
solution. Error magnitude of the result may be specified and achieved by modi-
fying the shape and size of the elements. Formulae to determine the coordinates
of the center of mass discretely can be expressed as follow:

X =

∑

i mixi
∑

i mi

Y =

∑

i miyi
∑

i mi
(5.7)

Z =

∑

i mizi
∑

i mi

If the density is uniform throughout the object, the mass m in the above
equations may be replaced by the length, l, the area, A, or the volume, V ,
depending on its geometry. The equations will now determine the coordinates of
the centroid discretely.

For the object that has holes or hollows inside its body, they will be accounted
by subtracting their moment contribution from the fictitious body with no such
features. That is the mass or volume will become negative. Also, it is advised
to tabulate the related arguments for the systematic summation purpose. Such
arguments are, for example, mi, rci, and mirci.

Example 5.5 ([2], Prob. 5/54) Determine the coordinates of the centroid of
the shaded area.
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Figure 5.19: Example 5.5 ([2], pp. 269)

Solution: We divide the area into three parts: the rectangle, the triangle,
and the negative area circle. Each of these can be determined readily their area
and the centroid as shown in Table 5.1 with respect to the given coordinate
frame in fig. 5.20.

i Ai xci yci Aixci Aiyci

1 0.1 0.2 0.125 0.02 0.0125

2 0.01875 0.45 0.083 8.4375E-3 1.5625E-3

3 -0.0113 0.2 0.125 -2.262E-3 -1.4137E-3

Table 5.1: Table of areas, their moments, and centroids of fig. 5.19

After the table is created, the centroid of the shaded area can be determined
directly from eq. (5.7) as

[

X =
P

i Aixi
P

i Ai

]

X = 0.02+8.4375E-3−2.262E-3
0.1+0.01875−0.0113

= 243.6 mm

[

Y =
P

i Aiyi
P

i Ai

]

Y = 0.0125+1.5625E-3−1.4137E-3
0.1+0.01875−0.0113

= 117.7 mm

Example 5.6 ([2], Prob. 5/72) A cylindrical container with an extended rect-
angular back and semicircular ends is all fabricated from the same sheet-metal
stock. Calculate the angle α made by the back with the vertical when the
container rests in an equilibrium position on a horizontal surface.

Solution: Since the container rests in an equilibrium position, its free body
diagram will be drawn and the equilibrium condition will be applied. This will
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Figure 5.20: Solution to example 5.5

allow us to solve for the required angle α. The force acting on the body would
be the ground reaction force and the gravitational force. Hence it is necessary
to locate its center of gravity. Since the container is fabricated from the same
material, the center of gravity would be the same as the centroid. In addition,
the metal sheet used has uniformly ‘thin’ thickness. Therefore, the centroid of
the volume would be the same as the centroid of the area of the sheet.

We divide the container into four parts: the rectangular back, two semi-
circular ends, and the half-cylindrical shell. Each of these can be determined
readily their area and the centroid as shown in Table 5.2 with respect to the
given coordinate frame in fig. 5.22.

i xci yci zci Ai Aixci Aiyci Aizci

1 200 0 100 8E4 16E6 0 8E6

2 200 -150 -300/π 6πE4 12πE6 -9πE6 -18E6

3 0 -150 -200/π 1.125πE4 0 -1.6875πE6 -2.25E6

4 400 -150 -200/π 1.125πE4 4.5πE6 -1.6875πE6 -2.25E6

Table 5.2: Table of areas, their moments, and centroids of fig. 5.21

After the table is created, the centroid can be determined directly from
eq. (5.7) as

[

X =
P

i Aixi
P

i Ai

]

X = 16E6+12πE6+4.5πE6
8E4+6πE4+1.125πE4+1.125πE4

= 200 mm

[

Y =
P

i Aiyi
P

i Ai

]

Y = -9πE6−1.6875πE6−1.6875πE6
8E4+6πE4+1.125πE4+1.125πE4

= −114.62 mm

[

Z =
P

i Aizi
P

i Ai

]

Z = 8E6−18E6−2.25E6−2.25E6
8E4+6πE4+1.125πE4+1.125πE4

= −42.75 mm
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Figure 5.21: Example 5.6 ([2], pp. 274)

These are the x, y, and z coordinates of the center of gravity as well. Looking
perpendicular to the yz-plane, the free body diagram along with its coordinate
system are displayed in fig. 5.22. There will be the equal and opposite ground
reaction force to the gravity force to make the container be in equilibrium. Both
forces are in vertical direction and pass through the center of gravity. Since a
radius is always perpendicular to the tangent line of the circle, the radius will
be the vertical line, coincident with the direction of forces, perpendicular to the
ground. If α is the angle made by the back with the vertical (see fig. 5.22), the
following geometric relationship can be stated:

α = tan−1

(

150− |Y |
|Z|

)

= 39.6◦

5.5 Theorem of Pappus

Several practical objects have their surface or volume created by revolving the
planar curve or the planar area about the nonintersecting line in its plane.
Pappus theorem is used to determine the area or volume of the revolved object.
This is done by dividing the object into infinitesimal circular-arc strips along
the axis of revolution. Then the total area or volume may be determined from
integrating the infinitesimal area or volume of these strips.
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Figure 5.22: Solution to example 5.6

Figure 5.23: Creation of the revolved surface object ([1], pp. 266)
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Figure 5.24: Creation of the revolved volume object ([1], pp. 266)

Revolved Surface From fig. 5.23, the infinitesimal area of each strip
is

dA = θydL

using the fact that the surface is constructed by revolving the planar curve L
about the x-axis by the angle θ. The infinitesimal area of the strip then would
be the length, θy, times the width, dL. Since the other strips are constructed by
revolving the segment of the line dL with the same angle θ, the total area of the
revolved surface would be

A = θ

∫

ydL = θyL (5.8)

The rightmost expression is obtained by recalling the line centroidal equation,
eq. (5.4). y is the y-centroidal coordinate of the curve of length L. Therefore the
area may be viewed as the lateral area of a cylinder with length L and radius y.

Revolved Object From fig. 5.24, the infinitesimal volume of each strip
is

dV = θydA

using the fact that the object is constructed by revolving the planar area A about
the x-axis by the angle θ. The infinitesimal volume of the strip then would be
the extruded length, θy, times the cross sectional area, dA. Since the other strips
are constructed by revolving the differential area dA with the same angle θ, the
total volume of the revolved object would be

V = θ

∫

ydA = θyA (5.9)

The rightmost expression is obtained by recalling the area centroidal equation,
eq. (5.5). y is the y-centroidal coordinate of the planar area A. Therefore the
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Figure 5.25: Example 5.7 ([2], pp. 280)

volume may be viewed as the extruded volume of the cross sectional area A along
the circular path of the centroid (with the length θy) about the revolving axis.

The usage of this theorem may be for directly determining the area or volume
of the revolving object. The other usage comes from viewing the equation in
the opposite way. Had we know the surface area or volume of the object by
some means (possibly from the experiment), we may apply eq. (5.8) or (5.9) to
determine the corresponding centroid of the planar curve or the planar area.

Example 5.7 ([2], Prob. 5/89) A hand-operated control wheel made of
aluminum has the proportions shown in the cross-sectional view. The area of the
total section shown is 15, 200 mm2, and the wheel has a mass of 10 kg. Calculate
the distance r to the centroid of the half-section. The aluminum has a density
of 2.69 Mg/m3.

Solution: The mass and density of the control wheel are given. Hence its
volume can be determined as

[V = M/ρ] V = 10/2690 = 0.00372 m3

Since the volume is created from the full-round revolution of half of the sec-
tion depicted in fig. 5.25, the planar area to revolve is 15200

2
×1E-6 = 7600E-6 m2.

From the Pappus theorem, the distance r to the centroid can be calculated as

[V = θrA] 0.00372 = 2π×r×7600E-6

r = 77.85 mm

Example 5.8 ([1], Prob. 5/93) Calculate the mass m of concrete required to
construct the arched dam shown. Concrete has a density of 2.40 Mg/m3.
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Solution: The concrete mass can be determined from the knowledge of the
density and the volume of the dam. From fig. 5.26, this particular dam is
constructed as if we rotate the cross section A-A about the pole of the 200 m
radius circle for 60◦. Therefore, we may use Pappus theorem in determining the
volume.

First, to avoid direct integration of the differential volume, the centroidal
coordinate with respect to the axis of revolution is necessary. To avoid direct
integration of the differential area, we view the cross sectional area as obtained
by subtracting the quarter area from the square area. Hence the centroidal
coordinate can be determined from the known centroids of the composite areas
in a discrete manner as

[

y =
P

i yciAi
P

i Ai

]

y =
80×80×(40+120)−π

4
×702×( 4×70

3π
+120)

80×80−π
4
×702

y = 175.52 m

Now the Pappus theorem may be used to calculate the revolved volume as

[V = θyA] V = π
3
× 175.52×

(

80× 80− π
4
× 702

)

V = 468, 985.2 m3

Consequently, the concrete mass required may be determined readily as

[m = ρV ] m = 2400× 468985.2 = 1.126E9 kg

5.6 Fluid Statics

In this section, we study an application of the distributed forces. When an object
is surrounded with fluid substance, force will be developed at the object surface
due to the pressure of the substance. When the fluid is in static equilibrium,
there will be no flow. This requires the shear force to be nulled to satisfy the
equilibrium condition. However, there will be compressive force from the fluid
acting along the normal direction of the surface. We would like to determine such
force.

Consider the free body diagram of an infinitesimal volume of fluid shown
in fig. 5.27. Assume the fluid is in equilibrium. With this condition, the fluid
pressure at a specified point in any direction will be the same. By the definition
of the pressure, which is the ratio of the force to the area acting upon,

p =
F

A
(5.10)
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Figure 5.26: Example 5.8 ([1], pp. 273)

Figure 5.27: Free body diagram of an infinitesimal fluid ([1], pp. 308)
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we then can apply it to determine the force acting upon the infinitesimal area dA
on the surface of the volume.

Note that all pressure forces in every direction except the vertical one cancels.
From the free body diagram and the equilibrium condition, the pressure force on
the lower face must balance the summation of the force acting on the upper face
and the fluid’s weight. This can be reduced to the following relation:

dp = ρgdh (5.11)

where ρ is the density of the fluid, g is the gravitational acceleration, and dh is
the infinitesimal height measured along the gravitational acceleration direction.

It is observed that the pressure is the function of the dimension in the vertical
direction solely. Additionally, the pressure increases with the depth. In fact, with
a constant ρ, we may integrate the above relation to determine the pressure as
follow:

p = p0 + ρgh = absolute pressure (5.12)

p0 is the pressure at h = 0. Normally p0 is selected to be the pressure at
the sea water surface level, which is called the atmospheric pressure. Mostly,
however, we offset p0 to be 0 (zero). Consequently the pressure p is no longer be
the absolute (or actual) pressure. Rather, it will be the relative pressure to the
atmospheric pressure. This is the same value as that read off the pressure sensor.
Therefore this pressure p is commonly called the gage pressure.

p = ρgh = gage pressure (5.13)

The unit of pressure is the unit of force over the square of the unit of dimen-
sion. For the SI unit system, it turns out to be N/mm2. To pay tribute to Pascal,
a French mathematician who introduce the notion of the pressure, 1 N/mm2 is
equal to 1 Pa.

Now we are in the position ready to determine the resultant force due to the
pressure distribution on the surface. To simplify the development, we divide the
surface into two categories: the flat surface and the curved surface. Furthermore,
for the curved surface, we confine the scope to the study of the cylindrical
surface with constant width only. Let’s begin with the flat surface case.

a) Flat Surface Imagine a flat surface of arbitrary shape immersed in
the fluid medium making the angle θ with respect to the vertical downward
direction as in fig. 5.28. We would like to determine the resultant force due to
the pressure distribution over the whole surface. To achieve this, we could divide
the flat surface into horizontal strips along the depth direction. This is because
the pressure is constant along the same strip. See fig. 5.28.

The net force acting on a particular strip can be calculated by recalling the
pressure definition in eq. 5.10 as

dR = pdA = ρgh (y)x (y) dy
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Figure 5.28: A flat surface immersed in the fluid medium with the pertinent
coordinates ([1], pp. 312)
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Figure 5.29: Pressure distribution overlaying the flat surface ([1], pp. 312)

where y is the distance measured along the projection of the vertical line onto
the surface. x is the width of a specific strip at the y position. Lastly, h is the
vertical distance of the strip measured from the surface level of the fluid. Note
that the pressure at this strip is ρgh (y). Hence the force acting on the strip can
be viewed as the volume of the extruded strip with the extruded length be equal
to the pressure at that strip.

Since the pressure force acts perpendicular to the surface and the surface is
flat, we can obtain the total force over the whole surface by summing the forces
acting on all strips. In continuous domain, this will become the integrating
operation:

R =

∫

dR =

∫

ρgh (y)x (y) dy (5.14)

The meaning of this formula is significant. The magnitude of the resultant
force can be obtained by stacking up the extruded strips over the area of the flat
surface and determining the summing volume. If we draw the pressure of each
strip on top of it, shown in fig. 5.29, we will have the pressure distribution over the
surface. Looking from the side view, the shape is seen to be trapezoidal (fig. 5.30)
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Figure 5.30: Side view profile of the pressure distribution ([1], pp. 310)

due to the linear variation of pressure along the depth, p = ρgh. Therefore we
can interpret the determination of the magnitude of the resultant force
to be equivalent to calculating the volume of the pressure distribution.
This fact allows one to avoid evaluating the direct integration had the volume
of the pressure distribution been readily recognized. The trapezoidal sectional
shape may assist the volume calculation, and furthermore determination of the
line of action of the resultant force.

Revisiting the above derivation and making use of the centroidal coordinate
definition, we can write

R = ρg

∫

hdA = ρghA = pavA (5.15)

Hence we have another interpretation of the resultant force. The magnitude of
the resultant force can be thought to be the pressure force induced by
the constant pressure, of the value at the centroid of the flat surface
area, acting on the whole flat plate. This allows one to avoid evaluating the
integration had the centroid and the area been easily determined.

The direction of the resultant force for the flat surface case is simple because
all the forces acting on the infinitesimal strips are parallel to each other and
perpendicular to the surface. Consequently, the direction of the resultant force
is perpendicular to the surface as well. Nevertheless, little effort is needed for
determining the line of action. Applying the principle of moment (Varignon’s
theorem) and subsituting for the expression of the local force acting on each strip,
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Figure 5.31: A cylindrical surface with constant width immersed in the fluid
medium ([1], pp. 311)

[

RY =
∫

ydR
]

Y =

∫

ypxdy
∫

pxdy
(5.16)

The implication of this equation can be obtained from the principle. Line
of action of the resultant force will pass through the centroid of the
volume of pressure distribution (denoted as point C in fig. 5.29). The above
formula yields the y-coordinate of the centroid. Additionally, the piercing point
of the line of action to the flat plate is called the center of pressure (denoted as
point P in fig. 5.29). This point is the projection of the centroid of the volume
of pressure distribution along the pressured force direction onto the plate. Note
that it is usually not the same point as the centroid of the plate area.

A special case is when the width of the plate is constant, i.e. the rectangular
flat plate. In other words, x is constant. This simplifies the above expression for
determining the line of action to be

Y =

∫

ydA′
∫

dA′ (5.17)

where dA′ = pdy is the infinitesimal area of the trapezoid along the y-coordinate.
See fig. 5.30. For this case, line of action of the resultant force will pass
through the centroidal y-coordinate of the area A′ of the side view
profile of the pressure distribution. The location of this trapezoidal centroid
may be evaluated using technique of composite bodies of triangle and rectangle,
as depicted in fig. 5.30.

Next let’s analyze a specific case of the curved surface, the cylindrical surface
with constant width.

b) Cylindrical Surface with Constant Width In this case, the sur-
face is formed as if it is a bended paper sheet. See fig. 5.31 for the cylindrical
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Figure 5.32: Side view profile of the pressure distribution on the cylindrical sur-
face ([1], pp. 311)

surface of the constant width b immersed in the fluid medium. We would like to
determine the resultant force R acting on it.

Similar approach as the flat surface case may be applied here where the plate
is first divided along the side view profile into infinitesimal strips (see fig. 5.32).
Then the corresponding force magnitude acting on a strip becomes

dR = pdA = ρgh (L) bdL

where L is the curved distance measured along the side view profile of the cylin-
drical surface. h is the vertical distance of the strip measured from the surface
level of the fluid. Again, ρgh (L) is the pressure at the strip of location L. Hence
the magnitude of force acting on the strip can be viewed as the volume of the
extruded strip with the extruded length be equal to the pressure at that strip.

The pressure forces act perperdicular to the strips. However, they are not
parallel as in the case of flat surface which mean that the magnitude of the
resultant force cannot be obtained simply by summing the force magnitude of
every strip altogether. Instead, we have to project the force acting on each strip
into two common components and then sum the components algebraically. The
resultant force may in turn be determined from summing vectorially these two
components back. If x- and y- components have been chosen as denoted in
fig. 5.32, then the magnitude of the resultant force along each direction may be
written as

Rx = b

∫

(pdL)x = b

∫

pdy (5.18)

Ry = b

∫

(pdL)y = b

∫

pdx (5.19)

Note that we cannot evaluate the magnitude of the resultant force by calcu-
lating the volume of pressure distribution, or by using eq. 5.15. This is because

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/cylindrical_surface_side_view_pressure.eps


5.6 Fluid Statics 166

the pressure forces acting perpendicular to the strips are not parallel to each
other and so cannot be summed algebraically. As a result, besides the magni-
tude, we need to specify its direction and line of action. The direction can be
easily determined, for example, by the angle the vector made with the x-direction;

θ = tan−1

(

Ry

Rx

)

(5.20)

The line of action may be determined by applying the definition of centroid
to evaluate the x- and y-centroidal coordinates separately. From fig. 5.32, the
x-centroidal coordinate of Ry is determined from the principal of moment

[

RyX =
∫

xdRy

]

X =

∫

xdRy
∫

dRy

=

∫

xpdx
∫

pdx
(5.21)

Similarly, the y-centroidal coordinate of Rx may be determined as

[

RxY =
∫

ydRx

]

Y =

∫

ydRx
∫

dRx

=

∫

ypdy
∫

pdy
(5.22)

The intersection of the line of action of Rx and Ry will be a point through which
the resultant force passes.

An alternative method of determining the resultant force R on the cylindrical
surface, which is easier for most cases, is to apply the equilibrium condition on
block of liquid. Casting this condition is sensible from the intrinsic assumption
of the fluid static, where the liquid is not flowing and incompressible. One can
then think casually the block of liquid as a rigid body object.

A typical free body diagram of a block of liquid column over the cylindrical
surface viewing from the side is shown in fig. 5.33. In the figure, Px and Py are
the pressure resultant forces acting on the top and side faces of the liquid block.
W is the weight of the liquid block passing through the centroid of the area
ABC (the plate has constant width). Note that all of them can be determined
readily compared to directly evaluating the resultant force. The reaction force
R from the cylindrical surface acting on liquid block may be determined from
the equilibrium conditions. Force equilibrium condition will reveal the mag-
nitude while the moment equilibrium condition will help answer the line of action.

Buoyancy Often, we are interested in the total reaction force acting by
the surrounding fluid on the immersed object. Instead of pursuing the previous
method of determining the reaction force on the surfaces, a more efficient way
exists. Consider fig. 5.34a) where a block of fluid is depicted with the virtual
closed boundary surface. This fluid block can maintain its shape because it
exerts reaction forces on the surrounding fluid. If this fluid block is taken out,
the reaction forces may be seen as shown in fig. 5.34b). This implies there will
be the counter-reaction forces acting back from the surrounding fluid onto the
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Figure 5.33: Free body diagram of a block of liquid column over the cylindrical
surface ([1], pp. 311)

fluid block surface. By the equilibrium condition, this force would have the same
magnitude as the weight of the fluid block and act vertically upward through the
C.M. of the fluid lump. See fig. 5.34c). Hence, this force is called the buoyancy
force. This force is not to be changed for if the fluid block be replaced
with any immersed object of the same shape. Therefore, regarding to the
buoyancy force, the following can be concluded

1. The buoyancy force is the pressure resultant forces exerting by the sur-
rounding fluid on the surface of the immersed object.

2. Its magnitude is equal to the weight of the fluid displaced.

3. Its line of action passes through the center of mass of the displaced fluid.

The magnitude of the buoyancy force may be written as

B = ρfVfg (5.23)

where ρf and Vf are the density and volume of the displaced fluid, respectively.
Suppose the material of the object has the density ρo, and if the object is fully
immersed, its weight will be equal to W = ρoVfg. When ρo < ρf , the object’s
weight will be less than the buoyancy force. This makes the object to buoy up to
the surface level and possibly expose to the air, which can be think of as another
fluid medium. It will rise up to the equilibrium position where the summation of
the buoyancy forces be equal to the object’s weight.
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Figure 5.34: Concept of buoyancy force ([1], pp. 314)

Example 5.9 ([1], Prob. 5/179) A deep-submersible diving chamber designed
in the form of a spherical shell 1500 mm in diameter is ballasted with lead
so that its weight slightly exceeds its bouyancy. Atmospheric pressure is
maintained within the sphere during an ocean dive to a depth of 3 km. The
thickness of the shell is 25 mm. For this depth calculate the compressive stress σ
which acts on a diametral section of the shell, as indicated in the right-hand view.

Solution: The outside sea water induces pressure resultant compressive
force on the outer surface of the submarine. In turn, it causes internal stress
in the shell as depicted by the free body diagram of the vehicle sectioned in
hemisphere in fig. 5.36. Note that only the force component in horizontal
direction is essential for calculating the compressive stress. The horizontal
compressive force F can be determined by summing the x-component of the
pressure force:

F =

∫

(pdA)x = ρg

∫

(hdA)x = ρghAy

By equilibrium condition, the pressure force magnitude has to be equal to
the compressive force inside the shell material.

[
∑

Fx = 0] ρghAy −
∫

σdA = 0

Substituting the depth of the centroid of the circular area, h, of which its
value is 3000 m into the above equation and assuming the constant compressive
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Figure 5.35: Example 5.9 ([1], pp. 320)

Figure 5.36: Solution to example 5.9

stress, σ, throughout the cross-sectional area, the required stress would be

σ =
ρghAy

Aring

=
1030× 9.81× 3000× π × 0.752

π × 0.752 − π × 0.7252
= 462.4 MPa

Example 5.10 ([2], Prob. 5/169) The cross section of a fresh-water tank with
a slanted bottom is shown. A rectangular door 1.6× 0.8 m in the bottom of the
tank is hinged at A and is open against the pressure of the water by the cable
under a tension P as shown. Calculate P .

Solution: Assume that the door has negligible weight and volume. There-
fore its weight and buoyancy force may be omitted. To determine P , we need
to calculate the pressure force acting on the gate and apply the equilibrium
condition to it. Fig. 5.38 shows the free body diagram of the gate and the
corresponding pressure distribution and forces acting on it. Since the door
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Figure 5.37: Example 5.10 ([2], pp. 328)

surface is flat and has constant width, it is appropriate to calculate the pressure
force magnitude from the volume of pressure distribution. Furthermore, we may
divide the volume into two parts – rectangular and triangular volume. Hence
the indicated force magnitudes are

F1 = (1000× 9.81× 1.2)× 1.6× 0.8

F2 =
1

2
× (1000× 9.81× 1.6 sin 30◦)× 1.6× 0.8

Taking the moment of all forces around point A, the balancing tension P
may be determined as

[
∑

MA = 0] −P × 1.6 cos 30◦ + F1 × 0.8 + F2 × 1.6× 2
3

= 0

P = 12566 N

Example 5.11 ([1]) A rectangular wood block of density 800 kg/m3 floats
stably in the salted water, of which its surface is topped with the spilled oil.
The salt water and the oil have density of 1030 and 900 kg/m3, respectively.
Determine the height, h, of the block that is not sunk.

Solution: If all of the pressure forces are referred to the atmospheric pres-
sure forces, the free body diagram of the block may be drawn as shown in
fig. 5.40. Recall that the buoyancy force is equal to the weight of the displaced
fluid, we separate it into two parts; one from the oil pressure and the other from
the salt water pressure. Establishing the equilibrium condition in the vertical
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Figure 5.38: Solution to example 5.10

Figure 5.39: Example 5.11 ([1])

direction, the protuding height may be determined.

[
∑

Fy = 0] 900g ×A× 150 + 1030g × A× (250− h)− 800g × A× 400 = 0

h = 70.4 mm

Example 5.12 ([2], Prob. 5/173-174) A channel-marker buoy consists of a 2.4
m hollow steel cylinder 300 mm in diameter with a mass of 90 kg and anchored
to the bottom with a cable as shown. If h = 0.6 m at high tide, calculate the
tension T in the cable. Also find the value of h when the cable goes slack as the
tide drops. The density of sea water is 1030 kg/m3. Assume the buoy is weighted
at its base so that it remains vertical.

If the C.M. of the buoy is in the geometric center of the cylinder, calculate
the angle α which would be made by the buoy axis with the vertical when the
water surface is 1.5 m above the lower end of the cylinder. Neglect the diameter
compared with the length when locating the center of buoyancy.
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Figure 5.40: Solution to example 5.11

Solution: For the first part, it is assumed that the buoy is weighted at its
base, and so it remains vertical. After drawing the free body diagram of the
buoy in fig. 5.42a), we may apply the equilibrium force condition along the
vertical direction,

[
∑

Fy = 0] B −Mg − T = 0

For the case when h = 0.6 m, the buoyancy force would be determined as

B = ρV g = 1030× π × 0.32

4
× 1.8× 9.81 N

Substituting the values into the above equilibrium equation, we can solve for the
cable tension

T = 402.7 N

When the cable goes slack, T = 0 and the buoyancy force must decrease to
counter the buoy’s weight solely. Consequently, the new height h must increase.
The new equilibrium equation would become

[
∑

Fy = 0] B −Mg = 0

1030× π × 0.32

4
× (2.4− h)× g − 90× g = 0

h = 1.164 m

In the second part, the buoy’s weight passes through its centroid, showing in
the new free body diagram of fig. 5.42b). Therefore, the buoy might be tilted
instead of just upright only. Let the tilted angle be θ. From the free body
diagram, the weight acts through the buoy’s centroid and the buoyancy force
passes through the centroid of the immersed portion. We then can set up the
equilibrium in moment about the base point of the buoy as follow
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Figure 5.41: Example 5.12 ([2], pp. 329)

[
∑

Mo = 0] B × 0.75 tan θ − 90× g × 1.2 sin θ = 0

The buoyancy force magnitude is determined from the weight of the dis-
placed fluid:

B = ρV g = 1030× π × 0.32

4
× 1.5

cos θ
× g

Substitute this value into the above equilibrium condition, it requires

sin θ = 0 or cos2 θ = 0.7584

Therefore,
θ = 0◦ or ± 29.44◦

Example 5.13 ([1], Prob. 5/186) A fresh water channel 3 m wide is blocked at
its end by a rectangular barrier, shown in section ABD. Supporting struts BC
are spaced every 0.6 m along the 3 m width. Determine the compression C in
each strut. Neglect the weights of the members.

Solution: The free body diagram of the barrier is shown in fig. 5.44 show-
ing the pressure distribution, the corresponding resultant force, the compressive
strut forces and the supporting force at the hinge. The magnitude of the
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Figure 5.42: Solution to example 5.12

resultant force may be determined from the volume of the pressure distribution
which is

R = 0.5× 1.2× (1000× 9.81× 1.2 sin 60◦)× 3 = 18.351 kN

Substituting this value into the moment equilibrium condition about the hinge
point,

[
∑

MA = 0] −R × 0.4 + 6C sin 60◦ × 0.6 = 0

C = 2.354 kN

Example 5.14 ([1], Prob. 5/193) The barge crane of rectangular proportions
has a 6 × 15 m cross section over its entire length of 40 m. If the maximum
permissible submergence and list in sea water are represented by the position
shown, determine the corresponding maximum safe mass mo that the barge can
handle at 10 m extended position of the boom. Also find the total displacement
m in the metric tons of the unloaded barge. The distribution of machinery and
ballast places the CG of the barges, minus the mass mo, at the center of the
hull.

Solution: Free body diagram of the crane reveals the pertinent forces and
make clear the equilibrium posture of it. The buoyancy force B is equal to the
weight of the displaced fluid,

B = ρV g = 1030× 15× 6× 40

2
× g
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Figure 5.43: Example 5.13 ([1], pp. 322)

Figure 5.44: Solution to example 5.13
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Figure 5.45: Example 5.14 ([1], pp. 324)

and acts through its C.M. The submerged portion is of prismatic shape and
hence the easiness of determining the location of its centroid, as indicated by
the intersection of the 2 m horizontal line and the 5 m vertical line shown in
fig. 5.46. The maximum permissible safe mass may be determined from setting
the moment equilibrium condition of the crane critical posture about the C.G.
of the barges.

[
∑

MG = 0] B cos θ × 2.5− B sin θ × 1−mog × (10 cos θ + 23 sin θ) = 0

mo = 203 Mg

The unloaded weight of the barge itself may be determined using the force
equilibrium condition along the vertical direction;

[
∑

Fy = 0] B −mg −mog = 0

m = 1651 Mg

Example 5.15 ([1], Prob. 5/197) The fresh water side of a concrete dam has
the shape of a vertical parabola with vertex at A. Determine the position b of
the base point B through which acts the resultant force of the water against the
dam face C.

Solution: This problem falls to the case of cylindrical surface with con-
stant width. Therefore, we will use the alternative method of free body diagram
of the block of fluid since it is more convenient. The free body diagram of the
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Figure 5.46: Solution to example 5.14

fluid column on the dam face C is shown in fig. 5.48. First, we will determine
the fluid weight. The shape of the dam surface can be described by a vertical
parabola with the vertex at A. If we set the x-y coordinate frame with the origin
at A, the surface may be written in equation of the form y = ax2 or x =

√

y/a
in the first quadrant.

From fig. 5.47, the dam surface passes through (27, 36). Substitute this point
into the equation, we can solve for the coefficient

a =
y

x2
=

36

272

To determine the fluid weight, we use the density definition which requires
the knowledge of the fluid volume. The fluid volume may be calculated from the
cros-sectional area times the depth of the fluid block. See fig. 5.48.

[V = Ah] V =
(

∫ 36

0
xdy

)

h =
(

2
3
xy|y=36

y=0

)

h = 648h m2

Therefore the fluid weight W is

[W = ρV g] W = 1000× 9.81× 648h

Its line of action passes through the centroid of the volume. This point
projected onto the cross-sectional view will be coincident with the centroid of
the area. Hence the distance X shown may be determined as
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Figure 5.47: Example 5.15 ([1], pp. 325)

[

AX =
∫

xcdA
]

648 X =
∫ 36

0

(

x
2

)

xdy

X = 10.125 m

There is the pressure force from the sided fluid acting on the vertical left sur-
face. We may determine its magnitude from the volume of pressure distribution,

F =
1

2
× 36× (1000× 9.81× 36)× h

The line of action passes through the centroid of the volume of pressure distribu-
tion which, for this simple geometry, is 12 m above the vertex point A.

We decompose the resultant force from the dam acting on the parabolic
surface passing through B into the horizontal and vertical components. It is
obvious that the magnitude of Ry must be equal to the fluid weight. From the
figure, Rx passes through point D which is located at the distance b to the left
of point B. Moment of all forces about D must be balanced. This condition is
used to determine the distance b.

[
∑

MD = 0] −F × 18−W × 10.125 + W × b = 0

b = 28.125 m

Example 5.16 ([1], Prob. 5/220) A flat plate seals a triangular opening in the
vertical wall of a tank of liquid of density ρ. The plate is hinged about the upper
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Figure 5.48: Solution to example 5.15

Figure 5.49: Example 5.16 ([1], pp. 333)

edge O of the triangle. Determine the force P required to hold the gate in a
closed position against the pressure of the liquid.

Solution: This flat plate has varying width along the depth. Hence the
explicit formula of the volume of pressure distribution is not available. One
might resort to determining the volume from integrating the volume of the
infinitesimal strip over the surface and formulating the moment equilibrium
condition about O. However, an extra step of evaluating the line of action of the
pressure force must be performed.

Rather, since the problem does not ask for the pressure force. We may deter-
mine the holding force P by formulating the moment equilibrium condition about
O and dealing with the infinitesimal distributed force directly. See fig. 5.50. A
particular infinitesimal force dR acting at the depth of y below the hinge edge
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Figure 5.50: Solution to example 5.16

may be expressed as
dR = pdA = ρg (h + y)xdy

The width x must be expressed in terms of the changing variable y. From the
geometric relationship of similar triangle,

x

a− y
=

b

a
→ x = b

(

1− y

a

)

This leads to
dR = ρg (h + y)× b

(

1− y

a

)

dy

These infinitesimal forces induce the moments around O, for which their
summation must balance the moment produced by the holding force P . Therefore

[
∑

Mo = 0] −Pa +
∫ y=a

y=0
ydR = 0

Substitute the expression for dR into the equation and evaluate the inte-
gral,

P =
ρgba

6

(

h +
a

2

)
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6.1 Basic Concepts

In this section, we roughly explain the basic technical terms that will be used
throughout the course.

• Space is the region occupied by the bodies. We set up an coordinate sys-
tem to specify where the object is by the position and its posture by the
orientation. Measurement of the absolute values must be done relative to
the inertial (fixed) reference frame. For the practical engineering prob-
lem, where the magnitude of the velocity is small compared to that of the
earth, motion of the object can be calculated using the earth’s frame as
the fixed reference frame with negligible error. And we can assume those
measurement absolute.

• Time is the measure of the succession of events. Often, we are more interested
in the change of physical quantities with respect to time, e.g. v = dr

dt
,

instead of time variable itself.

• Mass is the measure of the inertia of a body. The inertia indicates the resis-
tance to a change in motion.

• Force —a fixed vector— is the measure of the attempt to move a body.

• Particle is a body of which its dimension is negligible. The rotation effect is
insignificant because it is just a point. Whether the body can be treated as
the particle or not depends on the relative dimensions in the problem and
how much detailed of the solution we are interested in.

• Rigid body is a body whose relative movement between its parts are negligi-
ble relative to the gross motion of the body. For example the motion of an
ingot can be analyzed by assuming the object being rigid.

• Nonrigid body is a body whose relative movement between its parts are sig-
nificant relative to the gross motion of the body. Knowledge of the mechan-
ics of the deformable material must be used along with Dynamics in order
to determine the absolute motion of the nonrigid bodies.

Let us consider some examples to see the difference of each term. If we have
an object and consider the very small substance of the body. For differential
element analysis of the body, the small substance can be treated as a particle.
However, the substance must be handled as connecting objects had the molecular
effects in the body are of concern. Or think of an airplane. Even of its huge size,
the whole airplane may be modeled as a point in flight speed analysis along the
route. But if the rotational motion, such as yawing or pitching, of the airplane
body is important, its size does matter.
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The next two examples are to show whether an object is considered rigid or
nonrigid depends on how much detailed of the problem we would like to analyze.
Truss can just be looked as a rigid body for the preliminary design of truss
structure. Buf we must think of the truss elasticity if we were to choose the
material for that truss. A stiff linkage of the robot may be considered a rigid
body. However, the n-connecting linkages, treated as a whole, to form the robot
arm is an example of nonrigid body. Note the body-fixed inertia of the nonrigid
body is not constant.

6.2 Newton’s Laws

In this section, we briefly mention the Newton’s laws that describe the motion of
the particle under low velocity. The first law states:

“A particle remains at rest or continue to move in a straight line with
a uniform velocity if there is no unbalanced force acting on it.”

This statement can be formulated as

ΣF = 0⇔ a = 0

Newton’s second law, the most well-known of three, states:

“The absolute acceleration of a particle is proportional to the resultant
force acting on it and is in the direction of this resultant force.”

This statement can be formulated as

ΣF = ma (6.1)

where a = absolute acceleration of the particle.

Newton’s third law states:

“The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear.”

It can be nmemonically written as

action force = − (reaction force)

This fact is used very often in drawing the free body diagram (FBD).
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6.3 Gravitational Law

Any two bodies have the attraction force governed by the gravitational law

F = G
m1m2

r2
(6.2)

where

F = attraction force

G = gravitational constant value = 6.673× 10−11 m3/
(

kg · s2
)

m = mass of the involving bodies

r = distance between the bodies

Hence there is always the attraction force between the earth and the object.
This gravitational force is called the weight of the body.

W = m
Gme

r2
= mg (6.3)

where

g = free falling acceleration observed on the moving earth

= 9.81 m/s2

In practice, however, the gravitational acceleration can be considered the abso-
lute acceleration for the engineering problem on earth.
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7.1 Introduction

Kinematics is the study of the motion of bodies with no consideration to the forces
that accompany the motion. Kinematics analysis is a prerequisite to kinetics,
which is the study of the relationship between the motion and the corresponding
forces that causes the motion or are generated as a result of the motion.

In this chapter, we are interested in kinematics of particles. A particle is
a body whose physical dimensions are so small compared with the radius of
curvature of its path. Therefore an airplane may be considered as a particle if
the problem of interested is related to the flying route between two cities, even
the size of the airplane is huge compared to a human. In other words, the body
rotation effect is insignificant compared to the translation.

Figure 7.1: Several descriptions of the particle position ([3], pp. 22)

The implication of treating the object as a particle is that the concept of
rotation does not exist, in contrast to the time it is treated as a body. This
simplifies the analysis to a great degree. In the following, let us consider a
particle P moving along a specified trajectory depicted in fig. 7.1. Fundamentals
of kinematics is the position of the particle.

Position of P The problem is to describe where the particle currently is.
There are several ways to achieve this. One might use the distance along any
three mutually perpendicular directions, denoted as x, y, and z; that is we may
use the standard rectangular coordinate system.

Another way is to project the particle onto a certain plane for which the
origin and a reference direction are predetermined. The distance from the origin
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to the projected point is denoted as r. The angle measured from the reference
to the radial direction is called θ. And the distance measured along the line
perpendicular to the plane from the projected point to the particle is called z.
{r, θ, z} forms the cylindrical coordinate system that might be used to describe
the position.

Yet another way to specify where the particle be is to employ the spherical
coordinate system. This is possible by first determining the origin, the reference
plane, and the reference direction. The distance measured from the origin to the
point P is called R. Next we project this distance vector onto the reference plane.
The angle measured from the reference line to the projected radial vector is noted
as θ, or the azimuth angle. Finally, we measure another angle from the radial
vector to the distance vector. This angle is called the elevation angle, denoted as
φ.

Each description has its own advantage and hence is suitable to some par-
ticular tasks. For example, the spherical coordinate system is largely employed
in navigation system, such as rocket, radar, or satellite system. The cylindrical
coordinate system might be appropriate for some robots that have this structure
for pick and place operation. The rectangular coordinate system is suitable for
general tasks since it is easiest to understand the position of an object in three
dimensions by telling the width, height, and depth.

Motion of P We are not satisfied only just being able to describe where
the particle is because it is moving. We must be able to describe the motion
of the particle. In other words, we will also be interested in the change of its
position. This is achieved in general by differentiating the position with respect
to time. Before the analysis, first we must decide which kind of the coordinate
system we will be using. Other than intrinsically different types of coordinate
systems described above, they may also be categorized according to whether the
frames used are fixed (not moving) or moving.

Fixed reference coordinate frame In this case, the coordinates are measured
with respect to the fixed reference frame. For example, we are standing on the
ground and seeing the airplane flying. That is we are observing the motion of
the airplane from the fixed reference frame. What we are measuring is really the
absolute motion of the particle. Hence this is called absolute motion analysis.

Unfortunately, often the motion is convolved. It is quite inconvenient to
describe the position of the particle using the fixed reference frame solely. In
such situation, it is more advantage to employ the moving reference coordinate
frame.

Moving reference coordinate frame Here the coordinates will be measured
with respect to the moving reference frame. For an appropriate reference frame,
the description of the complex motion may be simplified. For example, we may
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Figure 7.2: Rectilinear motion showing the distance s and its change ∆s measured
along the straight line path ([3], pp. 22)

fly on another plane following the target plane in a manner that the relative
location between them is fixed. Consequently, we will see the plane not moving
in this moving reference frame! What we are measuring is just the motion of the
particle relative to the moving frame. When we add this relative motion to the
motion of the reference frame, we will recover the absolute motion.

7.2 Rectilinear Motion

To embark on the general three dimensional motion of a particle immediately
might be too demanding for the beginners. Therefore we shall start from the
simplest kind of motion, i.e. rectilinear motion. Rectilinear motion is the mo-
tion along a straight line. The particle is constrained to move along a particular
straight line. In this simple case, it is unnecessary to employ full version of coor-
dinate systems since the only independent variable that will be changed during
the course is the coordinate measured along the line. This coordinate will then be
selected as the position coordinate for rectilinear motion, denoted by the symbol
s shown in fig. 7.2.

Let the change in the position coordinate occurred during the time interval
∆t be the displacement ∆s. Note that both the position coordinate and the
displacement can be negative value had they go opposite to the predefined positive
direction. The average velocity, vav, is defined to be

vav = ∆s/∆t (7.1)

The velocity or, to be precise, the instantaneous velocity is the average ve-
locity as the time interval ∆t approaches zero. Recalling the definition of the
differentiation, this may be written as

v = lim
∆t→0

∆s/∆t =
ds

dt
= ṡ (7.2)

In words, the velocity is the time rate of change of the position coordinate.
We can do what we just did with the position coordinate to the velocity to

obtain the acceleration. Let the change in the velocity occurred during the time
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interval ∆t be ∆v. The average acceleration, aav, is defined to be

aav = ∆v/∆t (7.3)

The acceleration or, to be precise, the instantaneous acceleration is the average
acceleration as the time interval ∆t approaches zero. Recalling the definition of
the differentiation, this may be written as

a = lim
∆t→0

∆v/∆t =
dv

dt
= v̇ =

d2s

dt2
= s̈ (7.4)

In words, the acceleration is the time rate of change of the velocity. Multiplying
eq. 7.2 and 7.4 together, and integrating with respect to time, we obtain the
relationship:

vdv = ads (7.5)

which is sometimes useful as we shall see.

Some facts about position, velocity, and acceleration

1. Displacement is a vector quantity. In fact, it is a free vector directing from
the initial position and ending at the final position.

2. On the contrary, distance is a positive scalar quantity. It is measured along
the (possibly curved) path the distance that the particle really has travelled.

3. Both velocity and acceleration are free vectors. Therefore their changes
happen from two sources; change in magnitude and change in direction.

In solving the problems, one may need to perform the integration to the
definitions and the relationship of kinematics parameters in eq. 7.2, 7.4, and 7.5.
Some of their physical meanings are, for example,

∫ s2

s1

ds =

∫ t2

t1

vdt → s2 − s1 = area under v−t curve

∫ v2

v1

dv =

∫ t2

t1

adt → v2 − v1 = area under a−t curve

∫ v2

v1

vdv =

∫ s2

s1

ads → v2
2 − v2

1

2
= area under a−s curve

v =
ds

dt
→ v = slope of s−t curve

a =
dv

dt
→ a = slope of v−t curve
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Figure 7.3: Plots of the displacement, velocity, and acceleration with respect to
time and their related quantities ([3], pp. 24)

These relationships are depicted in fig. 7.3. The interpretation suggests an alter-
native way of numerical methods in evaluating the kinematic parameters.

Typically the acceleration (in general could be a function of displacement,
velocity, or time explicitly) of the object will be given. Then the problem will
ask for other kinematical parameters. Conceptually, these can be determined
by integrating the acceleration and solve for the quantities, such as velocity,
position, or time. To make the reader become acquainted with such problems, in
the following, we will consider several case studies where the given acceleration
be functions of other kinematic quantities.

a) a = constant Common forces that lead to the constant acceleration are
the gravitational force, or dry friction force, for example. Without loss of
generality, we assume at the beginning the following quantities: t = 0, s = so,
and v = vo. Then at a later time t, we would have

∫ v

vo

dv = a

∫ t

0

dt → v = vo + at

Or if the displacement information is known, we may write

∫ v

vo

vdv = a

∫ s

so

ds → v2 = v2
o + 2a (s− so)

And the elapsed displacement may be determined from

∫ s

so

ds =

∫ t

0

vdt =

∫ t

0

(vo + at) dt → s = so + vot +
1

2
at2

b) a = f (t) In this case, the acceleration would be the result of the synthetic
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forces applied for specific purposes. For example, the explosion force in the piston
cylinder from appropriate control of the valve timing and fuel amount causes the
automobile to run at a desired motion. Compared to the constant acceleration,
we cannot pull out the acceleration of the integral sign. The pertinent kinematic
quantities may then be determined as follow:

∫ v

vo

dv =

∫ t

0

f (t) dt → v = vo +

∫ t

0

f (t) dt

∫ s

so

ds =

∫ t

0

vdt → s = so +

∫ t

0

vdt = so + vot +

∫ t

0

∫ θ

0

f (ζ) dζdθ

by substituting the velocity expression as a function of time into subsequent
integration. Alternatively, one may see the problem

s̈ = f (t) , with i.c. to = 0, so, vo

as a second-order ordinary differential equation, and use one of the available
techniques in solving the problem directly.

c) a = f (v) Some apparatus provides the force that is explicitly a func-
tion of the component’s velocity, such as the viscous drag force in the dashpot.
Therefore the corresponding acceleration will be related to the velocity. The
velocity and displacement may then be determined by

[

a = dv
dt

]

t =
∫ t

0
dt =

∫ v

vo

1
f(v)

dv

By inversing the relationship, we may write the velocity as a function of
time,

v = g (t)

Integrating the equation with respect to time, the displacement is obtained:

s = h (t)

On the other hand, if the information on time is not provided, we may derive
the displacement relationship from

[vdv = ads]
∫ v

vo

v
f(v)

dv =
∫ s

so
ds

for which we may solve for the displacement as a function of the velocity

s = so +

∫ v

vo

v

f (v)
dv = g (v)

d) a = f (s) Many devices possess the spring behavior to some degrees. That is,
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they provide the resistive forces that are function of the deformation. Another
type of forces in this category is the field force, such as the attraction force. From
the gravitational law, the attraction force will be inversely proportional to the
square of the separated distance. These forces induce the acceleration that is a
function of the displacement. Hence we may solve for the velocity

∫ v

vo

vdv =

∫ s

so

f (s) ds → v2 = v2
o + 2

∫ s

so

f (s) ds

as a function of displacement
v = g (s)

The displacement may be determined explicitly by

[

v = ds
dt

]

t =
∫ s

so

1
g(s)

ds

Inverting the above relationship, we may have

s = h (t)

Following are sample problems related to the rectilinear motion where we
need to understand specific hidden implications and apply previous definitions in
determining the answers.

Example 7.1 ([3], Prob. 2/23) Small steel balls fall from rest through the open-
ing at A at the steady rate of 2 per second. Find the vertical separation h of two
consecutive balls when the lower one has dropped 3 meters. Neglect air resistance.

Solution: The accceleration for the free-falling object must be equal to the
constant of gravity. Also, we can integrate for the velocity and the displacement
explicitly. In other words,

a = g

v = vo + gt

s = so + vot + gt2/2

Since the ball is dropped from rest at the reference level of the opening, we have
the initial conditions

vo = 0, so = 0

Hence
s = gt2/2

Apply this relation to the ball already dropped by 3 m, the time spent would
be

3 = gt2l /2, tl = 0.782 s
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Figure 7.4: Example 7.1 ([3], pp. 33)

Since the balls are released with the rate of 2 per second, the time the consecutive
ball spent so far would then be

tu = tl − 0.5 = 0.282 s

Use the above relation again to solve for the distance travelled, which is related
to the vertical separation h:

su = 3− h = gt2u/2 → h = 2.61 m

as depicted in fig. 7.5.

Example 7.2 ([4], Prob. 2/23) In traveling a distance of 3 km between points
A and D, a car is driven at 100 km/h from A to B for t seconds and at 60 km/h
from C to D also for t seconds. If the brakes are applied for 4 s between B and
C to give the car a uniform deceleration, calculate t and the distance s between
A and B.

Solution: A helpful acceleration and velocity history diagram should be
drawn as shown in fig. 7.7. The distance traveled during the interval AB and
CD may then be obtained by

[

v = ds
dt

]
∫ sB

sA
ds =

∫ t/3600

0
vdt =

∫ t/3600

0
100dt, sB = t/36

and
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Figure 7.5: Solution to example 7.1

∫ sC

sD
ds =

∫ t/3600

0
vdt =

∫ t/3600

0
60dt, 3− sC = t/60

The distance traveled during the braking may be calculated indirectly from
the area under v-t curve as (fig. 7.7)

sC − sB =
1

2
× 4

3600
× (100 + 60) = 4/45

These three equations may be used to solve for the time spent

t = 65.5 sec

Consequently, the distance s between A and B may be determined by substituting
the time back into the first relation

s = sB = 1.819 km

Example 7.3 ([3], Prob. 2/27) The 350-mm spring is compressed to a 200-mm
length, where it is released from rest and accelerates the sliding block A. The
acceleration has an initial value of 130 m/s2 and then decreases linearly with
the x-movement of the block, reaching zero when the spring regains its original
350-mm length. Calculate the time t for the block to go a) 75 mm and b) 150 mm.

Solution: We may draw the change in the acceleration with respect to the

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/sol_7_1.eps


7.2 Rectilinear Motion 195

Figure 7.6: Example 7.2 ([4], pp. 30)

Figure 7.7: Solution to example 7.2
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block motion from the system description as shown in fig. 7.9. Accordingly, the
acceleration-displacement relationship may be written as

a = − 130

0.15
x = −866.7x

This graph inspires us to apply the velocity-displacement relationship
through the acceleration:

[vdv = ads]
∫ v

0
vdv =

∫ x

−0.15
ads =

∫ x

−0.15
−866.7sds

v2 = −866.7x2 + 19.5, v = 29.44
√

0.0225− x2

assuming that the block move positively to the right. The time spent for the
block to travel to the distance x would then be

[

v = ds
dt

] ∫ t

0
dt =

∫ x

−0.15
1
v
ds =

∫ x

−0.15
1

29.44
√

0.0225−s2
ds

t = 0.034
[

sin−1
( x

0.15

)

+
π

2

]

By substituting the position of the box x = 75 mm, the time spent would be
71.14 ms. For the position at x = 150 mm, the time spent is 106.7 ms.

Alternatively, one may use the definition of the acceleration

[a = s̈] ẍ + 866.7x = 0

to formulate the equation which is recognized as the unforced harmonic
equation. It has a well-known solution form of

x = A sin ωt + B cos ωt, ω =
√

866.7 = 29.44 rad/s

We may deduce the initial conditions from the problem statements as follow.

xo = −0.15 m, ẋo = 0 m/s

Substituting these conditions into the above solution form, we may be able to
solve for the coefficients:

A = 0, B = −0.15

Therefore, the motion of this block behaves according to

x = −0.15 cos 29.44t

for which we may inversely solve for the time spent. The answers agree with the
other approach.
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Figure 7.8: Example 7.3 ([3], pp. 34)

Figure 7.9: Solution to example 7.3

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_7_3.eps
./figs/sol_7_3.eps


7.2 Rectilinear Motion 198

Example 7.4 ([4], Prob. 2/31) A train that is traveling at 130 km/h applies
its brakes as it reaches point A and slows down with a constant deceleration. Its
decreased velocity is observed to be 96 km/h as it passes a point 0.8 km beyond
A. A car moving at 80 km/h passes point B at the same instant that the train
reaches point A. In an unwise effort to beat the train to the crossing, the driver
’steps on the gas’. Calculate the constant acceleration a that the car must have
in order to beat the train to the crossing by 4 s and find the velocity v of the car
as it reaches the crossing.

Solution: Since all objects in the problem move with constant accelera-
tion, we may refer to the instant formula applied to the constant acceleration
case, namely,

v = vo + at

v2 = v2
o + 2a (s− so)

s = so + vot + at2/2

For the train, the driver applies the brake causing the constant deceleration.
This makes the velocity being reduced from 130 to 96 km/h for the distance
traveled 0.8 km. Therefore the deceleration may be determined:

962 = 1302 + 2a× 0.8, a = −4802.5 km/h2

By this deceleration, the train would reach the intersection at the time counted
from the time it reaches point A

1.6 = 130t− 4802.5t2/2, t = 0.0189 hour or 68.11 s

For the car to beat the train to the crossing by 4 s, the time it must spent
counting from point B must be

t = 68.11− 4 = 64.11 s or 0.0178 hour

To achieve this, the car must be accelerated by the constant value of

2 = 80× 0.0178 + a× 0.01782/2, a = 3628.3 km/h2 = 0.28 m/s2

From this action, the car would have the velocity of

v = 80 + 3628.3× 0.0178 = 144.6 km/h = 40.2 m/s

when it reaches the crossing.

Example 7.5 ([3], Prob. 2/44) The horizontal motion of the plunger and shaft
is arrested by the resistance of the attached disk that moves through the oil
bath. If the velocity of the plunger is vo in the position A where x = 0 and t = 0,
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Figure 7.10: Example 7.4 ([4], pp. 32)

and if the deceleration is proportional to v so that a = −kv, derive expressions
for the velocity v and position coordinate x in terms of the time t. Also express
v in terms of x.

Solution: Since the acceleration is given as a function of the velocity, we
apply the definition of the acceleration and the velocity directly to determine
the velocity and position expressions in terms of the time.

[

a = dv
dt

] ∫ v

vo

1
−kv

dv =
∫ t

0
dt, v = voe

−kt

[

v = ds
dt

]
∫ x

0
ds =

∫ t

0
voe

−ktdt, x = vo

k

(

1− e−kt
)

To express the velocity in terms of the displacement, we may use the fol-
lowing differential relationship:

[vdv = ads]
∫ v

vo

1
−kv

vdv =
∫ x

0
ds, v = vo − kx

Example 7.6 ([4], Prob. 2/44) The electronic throttle control of a model train
is programmed so that the train speed varies with position as shown in the plot.
Determine the time t required for the train to complete one lap.

Solution: From the velocity-displacement graph, the train travels with the
constant velocity of 0.25 m/s in the straight line segments. Hence, the time used
for each segment may be simply calculated by

[∆s = vt] t = ∆s/v = 2/0.25 = 8 sec

Next, for a quarter of the circle, i.e. from 2 to 2+ π
2

m, the velocity decreases
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Figure 7.11: Example 7.5 ([3], pp. 37)

uniformly with the traveled distance in a manner that the slope

dv

ds
= −0.125

π/2
= −0.25/π

as seen from fig. 7.12. This slope appear in the reformulation of the relationships

[

vdv = ads, a = dv
dt

]

v dv
ds

= dv
dt

which allows us to solve for the elapsed time as

∫ ∆t

0

(−0.25/π) dt =

∫ 0.125

0.25

1

v
dv, ∆t = 8.71 sec

Motion in other segments replicate the above explained segments. Therefore,
total lap time used for one round travel may be determined.

lap time = 8× 2 + 8.71× 4 = 50.84 sec

Example 7.7 ([4], Prob. 2/52) A bumper, consisting of a nest of three springs,
is used to arrest the horizontal motion of a large mass that is traveling at 40 m/s
as it contacts the bumper. The two outer springs cause a deceleration propor-
tional to the spring deformation. The center spring increases the deceleration
rate when the compression exceeds 0.5 m as shown on the graph. Determine the
maximum compression x of the outer spring.

Solution: The associated deceleration of the mass with respect to the dis-
placement is given. This leads us to apply the following relationship
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Figure 7.12: Example 7.6 ([4], pp. 35)

[vdv = ads]
∫ 0

40
vdv = area under a−s curve

In particular,

0− 402

2
= −1

2
× 0.5× 1000− 1

2
× (x− 0.5)× (1000 + 1000 + 4000 (x− 0.5))

for which we recognize the negative area due to the deceleration. Also, we employ
the equation of the second line segment in determining the height of the end
point. Solving the equation for the maximum compression x corresponding to
null motion, we have

x = 0.831 m

7.3 Plane Curvilinear Motion

We turn our interest to analyzing the motion of the particle that is more involved.
Specifically, the particle will now be moving along an arbitrary curved path that
lies in a fixed plane. This is called planar curvilinear motion. Main source of
the difficulty roots to the fact that direction of the motion is allowed to change.
Consequently, the curvilinear motion must be described by the vector quantities
that have both the magnitude and the direction characteristics.
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Figure 7.13: Example 7.7 ([4], pp. 36)

An important fact about the vector is that its representation depends on
the coordinate system employed. For many cases there are several choices of
coordinate systems which may be used. However, only a few are appropriate
to the situation. Nevertheless, vector itself is an intrinsic quantity. In other
words, it is invariant to the change in coordinate system. Only the representation
that does change. In the following sections, we will study some of the common
representations.

Before that, we will take a look at the fundamentals of kinematics quantites
(i.e. position, velocity, and acceleration) again, except that they will be treated
as vector quantities for this time. Note that intrinsically they are coordinate-
system-free quantities.

Position Consider a particle A moving along the curvilinear planar path
depicted in fig. 7.14. Let there be a point O referring to the fixed reference
location. The location of the particle may then be described by a position vector
r (t) (fixed vector type) starting from the reference location and ending at the
place where the particle is currently located. At the time t, the particle is at A
and the corresponding position vector is r (t). After the time ∆t has elapsed,
the particle has traveled along the path so that currently is at A

′

. Consequently,
the position vector now becomes r (t + ∆t). The displacement vector is defined
to be the vector difference of the position vectors,

∆r = r (t + ∆t)− r (t) (7.6)

On the contrary, the distance ∆s traveled by the particle during this same
interval is a positive scalar quantity for measuring the cumulative length along
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Figure 7.14: Position vector describing the location of the particle ([3], pp. 40)

the curved path. Hence it is always greater than or equal to the magnitude of
the displacement vector.

Velocity An indication of how the position vector changed is related to
what is called the velocity. Referring to fig. 7.14, motion of the particle has
made the change in the position vector ∆r during the interval ∆t. Average of
this change over time is defined as the average velocity

vav =
∆r

∆t
(7.7)

Similarly, the average of the distance over time is defined as the average speed

vav =
∆s

∆t
(7.8)

If we shrink the time interval ∆t during the analysis in the way that it con-
verges to zero, i.e. the motion occurs in an infinitesimal time interval, the average
velocity will be called the instantaneous velocity or, more commonly, the velocity :

v = lim
∆t→0

∆r

∆t
=

dr

dt
= ṙ (7.9)

by recalling the definition of the differentiation. In other words, the velocity is
the average velocity at that instant. Since v is derived from the change in the
position vector r, it includes the effect of change both in the magnitude and
direction of r.

Considering fig. 7.14, as ∆t→ 0, the direction of the displacement vector ∆r
approaches that of the tangent line to the trajectory. This implies v is always a
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Figure 7.15: Velocity vector always tangent to the path of the particle ([3], pp.
40)

vector that has the direction tangent to the path. Had we know the trajectory of
the particle, we will know the direction of the velocity at every instant as drawn
in fig. 7.15.

If we consider the magnitude of the displacement alone and treating the time
interval ∆t→ 0, the magnitude value of the average velocity would approach

|v| = lim
∆t→0

|∆r|
∆t

= lim
∆t→0

∆s

∆t

using the fact that |∆r| will approach ∆s as ∆t → 0. This leads us to the
definition of the speed,

v =
ds

dt
= ṡ = |v| (7.10)

Consequently, the speed may be determined from the magnitude of the velocity.

Acceleration Analogous derivation may be performed on the velocity,
rather than the position vector, to obtain the acceleration. At any two instant of
the motion separated by the time interval ∆t, the associated velocity may have
changed by the amount ∆v. Figure 7.16 depicts the velocity vector diagram.
The average acceleration is defined to be the change in the velocity over the time
interval, namely,

aav =
∆v

∆t
(7.11)

As the time interval approaches zero, the average acceleration may be de-
termined by differentiating the velocity. Its value is called the instantaneous
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Figure 7.16: Acceleration vector always pointing toward the region containing
the center of curvature ([3], pp. 40)

acceleration, or, more commonly, the acceleration:

a = lim
∆t→0

∆v

∆t
=

dv

dt
= v̇ = r̈ (7.12)

Since a is derived from the change in the velocity vector v, it includes the
effect of change both in the magnitude and direction of v. Additionally, the
nice property of the velocity vector that is tangent to the trajectory does not
propagate to the case of the acceleration. Because the magnitude of the velocity
at any point can be arbitrary, generally the direction of the acceleration is neither
tangent nor normal to the path. However, it will be pointing toward the half-
plane, divided by the tangent line, that contains the (instantaneous) center of
curvature of the path. This is due to the fact that the normal component of the
acceleration always points toward the center of curvature. More details can be
found in section 7.5.

In the following three sections, we will study these three kinematical quan-
tities (position vector, velocity, and acceleration) under three commonly used
coordinate systems in plane motion: the rectangular, the normal and tangential,
and the polar coordinate systems. Basic kinematical definitions will be employed
in deriving the quantities in terms of particular coordinate system configurations
and their time rate of changes. As a general guideline for selecting an appropriate
coordinate system representation, it should be chosen according to the manner
in which the motion is generated or by the form in which the data are specified.

7.4 Rectangular Coordinates (x− y)

Rectangular coordinate system is the most commonly used one because its coordi-
nate parameters, denoted x and y, are in accordance with the daily measurement
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along the wide and long directions. For this coordinate system, we have to set up
the coordinate frame which consists of the origin O, and two mutually perpendic-
ular directions denoted by x and y symbols for x- and y-directions. Associated
with these directions are the unit vectors i and j, respectively. From the elemen-
tary properties of the vectors, we may write the position vector describing the
location of the particle specifically as

r = x (t) i + y (t) j (7.13)

That is the position vector is decomposed into two subvectors along the x- and
y-directions. If these directions are unchanged, we may determine the velocity
from its definition:

v = ṙ = ẋi + ẏj = vxi + vyj (7.14)

with di
dt

= 0 and dj
dt

= 0. The acceleration may be determined by differentiating
the velocity, of which its straightforward relationship is

a = v̇ = r̈ = ẍi + ÿj = axi + ayj (7.15)

Figure 7.17: Position, velocity, and acceleration described in x-y coordinate sys-
tem ([3], pp. 43)

From the above kinematic equations, if the x- and y-components of the acceler-
ation are independently generated or determined, i.e. ax and ay at a specific point
are related by the same instant of time only, we may integrate each individual
expression with respect to time to obtain the velocity and position components.
One may imagine the curvilinear motion be generated from the superposition of
two perpendicular rectilinear motions simultaneously. In fact this kind of motion
is found in machines like x-y plotter or the gantry crane in the factory. Therefore
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the rectangular coordinate system is suitable for the complex motion which is na-
tively generated from the mutually orthogonal rectilinear independent motions
simultaneously.

If one has solved for the parametric equations in time x = f1 (t) and y = f2 (t),
the equation of the curved path, written in general form as y = f (x), may
be determined by algebraically eliminating the time parameter t in those two
parametric equations. Consulting the diagram shown in fig. 7.17, some of the
common quantities may be calculated from the kinematical vector components
as shown below.

direction of the velocity : tan θ =
vy

vx
=

dy

dx
(7.16)

speed : v =
√

v2
x + v2

y (7.17)

magnitude of the acceleration : a =
√

a2
x + a2

y (7.18)

Projectile Motion A typical motion that is suitably represented using the rect-
angular coordinate system is the projectile motion. It is the motion of the thrown
object. For the first-run analysis, we shall neglect the aerodynamic drag force.
Also it is assumed that the effects of the curvature of the rounded earth and its
rotation are small enough. The range of the altitude of the whole motion is in
the order that the gravitational force variation may be omitted.

Figure 7.18: Motion profile of the projectile motion showing variations in the
velocity ([3], pp. 44)

With these simplification, the resulting trajectory affixed with the velocity at
certain points are shown in fig. 7.18. We set up the coordinate system such that
its origin coincides with the initial point. The axes directions are chosen to point

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/projectile_motion.eps


7.4 Rectangular Coordinates (x− y) 208

in the horizontal and vertical directions, lining up the y-direction opposite to the
gravitational acceleration direction. Therefore, we may write

ax = 0, ay = −g

showing the independency of the x- and y-motions. Consequently, we may inte-
grate the acceleration to obtain the corresponding velocity and positional com-
ponents as

ax = 0, vx = vxo, x = xo + vxot

ay = −g, vy = vyo − gt, y = yo + vyot−
1

2
gt2

for the given initial position and velocity components of xo, yo, vxo, and vyo. Fur-
ther, we may apply the acceleration-displacement relationship in the y-direction
to derive for the following:

v2
y = vyo

2 − 2g (y − yo)

To gain further understanding in velocity variation, we evaluate and draw
the associated velocity and its components at certain points. It is easily observed
that the velocity component in x-direction remains unchanged and equal to the
initial value due to zero acceleration component in this direction. However, the
magnitude of the velocity component in y-direction will gradually decrease until
it becomes zero at the apex. After that, it will gradually increase in the opposite
direction. This causes the path to turn back toward the ground. One might
try to eliminate the intermediate time variable t in the parametric equations of
x (t) and y (t) to verify that the trajectory is indeed described by the parabolic
equation.

Example 7.8 ([4], Prob. 2/81) A particle is ejected from the tube at A with a
velocity v at an angle θ with the vertical y-axis. A strong horizontal wind gives
the particle a constant horizontal acceleration a in the x-direction. If the particle
strikes the ground at a point directly under its released position, determine the
height h of point A. The downward y-acceleration may be taken as the constant g.

Solution: The particle is subject to independent mutually perpendicular
acceleration field a and g. Hence we choose to set up the rectangular coordinate
frame that has their axes aligned with the positive acceleration directions. The
acceleration acting on the particle is shown in fig. 7.20.

With the chosen coordinate frame, the initial position and velocity are

vxo = −v sin θ, xo = 0

vyo = v cos θ, yo = 0

Chulalongkorn University Phongsaen PITAKWATCHARA



7.4 Rectangular Coordinates (x− y) 209

Figure 7.19: Example 7.8 ([4], pp. 50)

We then integrate the acceleration relationship to obtain the velocity and position
as a function of time:

ax = a, vx = −v sin θ + at, x = −vt sin θ +
1

2
at2

ay = g, vy = v cos θ + gt, y = vt cos θ +
1

2
gt2

At the point where the particle hits the ground, x = 0 and y = h. Using the
x (t) relationship, we may solve for the hitting time

0 = t

(

at

2
− v sin θ

)

, t =
2v sin θ

a

Substituting the time t into y (t) relationship, the height h of point A may then
be determined:

h =
2v2

a
sin θ

(

cos θ +
g

a
sin θ

)

Example 7.9 ([3], Prob. 2/75) Electrons are emitted at A with a velocity u at
the angle θ into the space between two charged plates. The electric field between
the plates is in the direction E and repels the electrons approaching the upper
plate. The field produces an acceleration of the electrons in the E-direction of
eE/m, where e is the electron charge and m is its mass. Determine the field
strength E that will permit the electrons to cross one-half of the gap between
the plates. Also find the distance s.
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Figure 7.20: Solution to example 7.8

Solution: The electron traveling between two plates is subject to the elec-
tric field force of which its acceleration along the horizontal and vertical
components may be written as

ax = 0, ay = −eE

m

See fig. 7.22. The discharged electron will have the zero velocity component in
y-direction when it reaches one-half of the gap. Therefore,

[vydvy = aydy] v2
y = vyo

2 + 2ay (y − yo)

0 = (u sin θ)2 − 2 eE
m
× b

2

The required field strength that permits the electron to cross one-half of
the gap would follow the relationship that

E = mu2

eb
sin2 θ

When the electron falls back to the emitting plate, its coordinate values would
be (s, 0). Substitute these values into the x-coordinate relationship, we may solve
for the time

x = s = ut cos θ, t =
s

u cos θ

Use this expression to eliminate the time in the y-coordinate relationship, the
horizontal distance s may be determined.

0 = s tan θ
(

1− s

2b
tan θ

)

, s = 0 or
2b

tan θ

Example 7.10 ([4], Prob. 2/87) Water is ejected from the nozzle with a speed
vo = 14 m/s. For what value of the angle θ will the water land closest to the wall
after clearing the top? Neglect the effects of wall thickness and air resistance.
Where does the water land?
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Figure 7.21: Example 7.9 ([3], pp. 50)

Figure 7.22: Solution to example 7.9
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Solution: For this problem, we may treat a stream of water as a stream
of particles. Set up the rectangular coordinate system having the origin at the
point on the ground down below the nozzle A. At one particular particle just
above the zero-thickness wall, the corresponding coordinate values are (19, 1).
Applying the x- and y-positional relationship with ax = 0 and ay = −g, the
following equations hold:

[x = vxot] 19 = 14t cos θ

[

y = yo + vyot + 1
2
ayt

2
]

0.7 + 1
2
gt2 = 14t sin θ

By recognizing the trigonometric identity sin2 θ + cos2 θ = 1, square the
above equations and sum them together, we can eliminate the unknown angle θ
and solve the polynomial equation for the time t.

142t2 = 192 +

(

0.7 +
1

2
gt2
)2

, t = 2.14, 1.81 sec

The corresponding nozzle angle may be solved for after substituting the time
back into either one of the positional relationship.

θ = 50.64◦, 41.43◦

Trajectory sketch of these two solutions is drawn in fig. 7.23. It is seen that
path (1) with the nozzle angle of 50.64◦ will make the water jet land closest to the
wall. For the coordinate frame employed, coordinate values of the place where
the water lands are (x, 0) where x is the horizontal distance measured from the
nozzle A. The y-coordinate relation will allow us to solve for the spent time

0 = 0.3 + 14t sin 50.64− 1

2
gt2, t = 2.234 sec

Then, the associated x-coordinate value would be

x = 14t cos 50.64 = 19.835 m

Hence the water lands at 19.835− 19 = 0.835 m to the right of the wall.

Example 7.11 ([3], Prob. 2/97) A projectile is ejected into an experimental
fluid at time t = 0. The initial speed is vo and the angle to the horizontal is
θ. The drag on the projectile results in an acceleration term aD = −kv, where
k is a constant and v is the velocity of the projectile. Determine the x- and
y-components of both the velocity and displacement as functions of time. What
is the terminal velocity? Include the effects of gravitational acceleration.
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Figure 7.23: Example 7.10 ([4], pp. 51)

Solution: Two forces act on the bullet, namely the fluid drag force and
the gravitational force. The drag force produces the deceleration that is
proportional to the velocity which, for the given coordinate frame, we may write

a = −kv − gj = (−kvx) i + (−kvy − g) j

Determination of the velocity and displacement is quite straightforward as
before. The initial speed vo and its direction θ measured against the x-axis are
given. The bullet starts at the entrance port, for which we have set up the
coordinate values as (0, 0). The only difficulty is the acceleration is not constant,
and hence we need to use some integral formula. For the x-component,

[

ax = dvx

dt

] ∫ vx

vo cos θ
1

−kvx
dvx =

∫ t

0
dt

vx = (vo cos θ) e−kt

[

vx = dx
dt

]
∫ t

0
(vo cos θ) e−ktdt =

∫ x

0
dx

x = vo cos θ
k

(

1− e−kt
)

For the y-component,

[

ay = dvy

dt

]

∫ vy

vo sin θ
1

−kvy−g
dvy =

∫ t

0
dt

vy =
(

vo sin θ + g
k

)

e−kt − g
k

[

vy = dy
dt

] ∫ t

0

{(

vo sin θ + g
k

)

e−kt − g
k

}

dt =
∫ y

0
dy

y = 1
k

(

vo sin θ + g
k

) (

1− e−kt
)

− g
k
t
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Figure 7.24: Example 7.11 ([3], pp. 54)

Terminal velocity is the velocity as t → ∞. Take the limit as t → ∞ in the
expression for vx (t) and vy (t), we have

(vx)t∞
= 0, (vy)t∞

= −g

k

Example 7.12 ([3], Prob. 2/100) A projectile is launched with speed vo from
point A. Determine the launch angle θ that results in the maximum range R up
the incline of angle α (where 0 ≤ α ≤ 90◦). Evaluate your results for α = 0, 30,
and 45◦.

Solution: For the projectile motion under the gravity field, ax = 0 and
ay = −g. Integrating them with respect to time and applying the initial velocity
conditions, the velocity components would be

vx = vo cos θ, vy = vo sin θ − gt

Then, we integrate the velocity expressions to determine the displacement along
x- and y-directions as

x = vot cos θ, y = vot sin θ − 1

2
gt2

Consider the particle meeting the incline at B, we may use the x-coordinate
expression to solve for the corresponding time as

R cos α = vot cos θ
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t =
R cos α

vo cos θ

Substitute the time into the y-coordinate expression to construct the relation
between R and θ;

R sin α = vo

(

R cos α

vo cos θ

)

sin θ − g

2

(

R cos α

vo cos θ

)2

which, after some manipulation, may be reduced to

2v2
o cos2 θ tanα = 2v2

o sin θ cos θ − gR cos α

Since the change in the projectile launch angle θ causes the change in the
inclined distance R, the maximum distance happens when dR

dθ
= 0. Therefore we

may take the total differentiation on the previous relation,

−2v2
o tanα (2 cos θ sin θdθ) = v2

o (2 cos 2θdθ)− g cos αdR

and rearrange the expression

dR

dθ
=

2v2
o

g cos α
(cos 2θ + sin 2θ tan alpha)

which will be equated to zero, to solve for the optimal angle θ∗. Consequently,

tan 2θ∗ = − 1

tan α

2θ∗ = tan−1

(

− 1

tan α

)

= 180◦ − tan−1

(

1

tanα

)

= 180◦ − (90◦ − α) = 90◦ + α

or

θ∗ =
90◦ + α

2

Example 7.13 ([4], Prob. 2/95) Determine the equation for the envelope a
of the parabolic trajectories of a projectile fired at any angle but with a fixed
muzzle velocity u. (Hint : Substitute m = tan θ, where θ is the firing angle with
the horizontal, into the equation of the trajectory. The two roots m1 and m2 of
the equation written as a quadratic in m give the two firing angles for the two
trajectories shown such that the shells pass through the same point A. Point A
will approach the envelope a as the two roots approach equality.) Neglect air
resistance and assuming g is constant.

Solution: We shall start from the acceleration of x- and y-components to
determine their corresponding velocity and displacments.

ax = 0, vx = u cos θ, x = ut cos θ
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Figure 7.25: Example 7.12 ([3], pp. 54)

ay = −g, vy = u sin θ − gt, y = ut sin θ − 1

2
gt2

for a particular firing angle θ and velocity u. Next, we should determine the
projectile trajectory by eliminating the common time parameter t. The trajectory
equation is then

y = x tan θ − g

2

(

x2

u2 cos2 θ

)

which confirm the parabolic shape of the path.
Suppose we would like the trajectory to pass through a point A that has

the coordinate (x, y) by varying the firing angle solely. The required angle may
be determined from the above trajectory equation. The angle θ appears as the
variable of two transcendental functions, namely tan θ and cos θ. Both are related
by the following trigonometric identity:

1 + tan2 θ = sec2 θ =
1

cos2 θ

Let m = tan θ. Hence 1
cos2 θ

= 1 + m2. Make use of these new expression with
the trajectory equation, we may rearrange and rewrite it as

gx2m2 − 2xu2m +
(

2yu2 + gx2
)

= 0

a quadratic function of the variable m. Hence there are two roots according
to the fact that point A may be reached from two distinct paths as seen in
fig. 7.26. Interestingly, as those two paths approach each other, the point (x, y)
will become a point on the envelope of the family of trajectories. Consequently,
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Figure 7.26: Example 7.13 ([4], pp. 53)

the two distinct roots must become two repeated roots. This calls for the zero
discriminant. Specifically,

(

2xu2
)2 − 4gx2

(

2yu2 + gx2
)

= 0

In other words, the following relation must be hold for any point (x, y) on the
envelope

y =
u2

2g
− gx2

2u2

That is, it is the envelope equation.

7.5 Normal and Tangential Coordinates (n− t)

The normal and tangential coordinate system is quite different from the rectangu-
lar one we have studied so far in a way that it is intrinsically a moving coordinate
system (any coordinate system may not be fixed, though). The coordinate frame
is attached with the particle and hence moves and rotates with it along the path.
See fig. 7.27.

To set up the n-t coordinate frame, we place the frame origin right at the
particle. The positive normal, denoted as n, direction will point toward the (local)
center of curvature. In turn, the tangential, denoted as t, axis is perpendicular to
the n-axis. Its positive direction may be selected arbitrarily, although commonly
it points in the same way as the particle moves along the path. The unit vectors
associated with the n and t axes are en and et respectively.

We are now ready to analyze fundamental kinematic parameters represented
in the n-t coordinate frame. Position of the particle at any time is obviously
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Figure 7.27: Successive n-t coordinate frames showing the instantaneous center
of curvature ([3], pp. 55)
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Figure 7.28: Change in et by the infinitesimal rotation ([3], pp. 55)

0en + 0et. For the velocity, one may be tempted to take the derivative of the
position vector with respect to time. This would give us the null velocity, which
is quite surprising since no matter how the particle actually moves, the obtained
velocity would always be zero. What went wrong is that the position is the relative
position. In other words, we measure the position of the particle with respect to
the moving frame. The resulting velocity would then be the relative velocity. An
observer moving with the n-t frame would see the particle not moving.

Nevertheless, we will resort to considering fig. 7.27 to determine the absolute
velocity. At a moment, the particle is at A. After time elapsed, it moves to A

′

along the curved path. As the elapsed time converges to zero, point A and A
′

becomes coincident. The displacement becomes smaller and approach ds = ρdβ,
where ρ is the radius of curvature of the path and dβ is the sweeping angle the
radius of curvature traveled during that small interval. Taking the limit of the
displacement as time interval converges to zero is equivalent to differentiating
the displacement with respect to time, which is, according to the definition, the
speed. Therefore,

v =
ds

dt
=

ρdβ

dt
= ρβ̇

Since the n-t coordinate frame has the n-axis pointing toward the center of
curvature and perpendicular to the trajectory, it is implied that the t-axis, which
is tangent to the path, will be in the direction of the velocity vector. Therefore,
the velocity vector may be expressed as

v = vet = ρβ̇et (7.19)

That is, the velocity points along the t-axis. As the particle travels along +t-
direction, β̇ > 0.

Differentiating the (absolute) velocity to determine the acceleration, we have

a =
dv

dt
= vėt + v̇et
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which can be further simplified into fundamental terms. Consider the change in
et, which is a free unit vector. Therefore, the change will get involved with the
change in its direction only. Figure 7.28 illustrates et being rotated by the small
angle dβ to a new vector e

′

t. Difference between these two vectors is the vector
det:

det = |et| dβen = dβen

Taking the limit as time duration approaches zero, we have

ėt = β̇en (7.20)

As a corollary, we also have
ėn = −β̇et (7.21)

With these relationships, we may decompose the acceleration into n- and t-
components as

a = vβ̇en + v̇et (7.22)

Further elaboration might be handy:

an = vβ̇ = ρβ̇2 =
v2

ρ

at = v̇ = s̈ = ρβ̈ + ρ̇β̇

From the last relationship, one may observe that the tangential acceleration be-
haves as if it is the rectilinear acceleration. That is it is the time derivative of
the velocity, or the second time derivative of the displacement. We can extend
our perspective on rectilinear motion to the curvilinear motion as long as the re-
lated components are all in tangential direction. The normal direction quantities
are there to make the path deviate from the straight line path. Therefore the
following relation holds as well:

vdv = atds

Consider fig. 7.29 which shows the change in velocity and its components.
As time duration approaches zero, an indicates the change in the direction of v
while at indicates the change in the magnitude. Note that the component an will
always direct toward the center of curvature. The component at, however, will
be in +t-direction if the speed v is increasing. It may be in −t-direction had the
speed is decreasing. Consequently though the acceleration direction does not lie
in either one pricipal direction solely as for the velocity case (in the tangential
direction), it will tend to the side (divided by the curvature tangent) where the
center of curvature lives.

A final comment is that the kinematics quantities are intrinsic. Even they
may be represented in some specific coordinate frame, the inherent property such
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Figure 7.29: Infinitesimal change in the velocity and the relationship with the
acceleration represented in n-t coordinate system ([3], pp. 55)

as the magnitude and the direction must not be changed. For the problem using
the x-y and the n-t coordinate frames, the following may be stated:

v = vxi + vyj = vet

a = axi + ayj = anen + atet

Example 7.14 ([3], Prob. 2/122) The camshaft drive system of a four-cylinder
automobile engine is shown. As the engine is revved up, the belt speed v changes
uniformly from 3 m/s to 6 m/s over a 2 second interval. Calculate the mag-
nitudes of the accelerations of point P1 and P2 half way through this time interval.

Solution: Since the timing belt velocity is increased uniformly, the (tangential)
acceleration is constant. Therefore

at =
dv

dt
=

∆v

∆t
=

6− 3

2
= 1.5 m/s2

This constant acceleration also implies that, at the time half of the interval, the
belt speed is

v =
3 + 6

2
= 4.5 m/s

Point P1 is moving in circular path around the sprocket. Therefore it will
have both the tangential and normal components of the acceleration. The
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Figure 7.30: Example 7.14 ([3], pp. 64)

normal acceleration may be calculated as

[an = v2/ρ] an = 4.52

0.06
= 337.5 m/s2

Therefore the acceleration of P1 becomes

aP1 =
√

a2
n + a2

t =
√

337.52 + 1.52 = 337.5 m/s2

For point P2, it is moving along the tangent between the camshaft and the
intermediate sprocket. Hence the path is straight line and so the acceleration is
just the tangential acceleration of the belt.

aP2 = at = 1.5 m/s2

Example 7.15 ([3], Prob. 2/126) A baseball player releases a ball with the
initial conditions shown in the figure. Determine the radius of curvature of the
trajectory a) just after release and b) at the apex. For each case, compute the
time rate of change of the speed.

Solution: We must use the n-t coordinate system since the problem asks
for the radius of curvature ρ. Refer to the velocity and acceleration sketches
shown in fig. 7.32. At just after release, the normal acceleration component is

an = g cos 30

because the throwing angle is 30◦ up with respect to the horizontal line. From
this, we may determine the radius of curvature
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Figure 7.31: Example 7.15 ([3], pp. 65)

[an = v2/ρ] g cos 30 = 302

ρ
, ρ = 105.9 m

The time rate of change of the speed is the tangential acceleration, which
is obvious from the sketch as

v̇ = at = −g sin 30 = −4.905 m/s2

Same quantities for the baseball at the apex may be determined in the same
manner. At the apex,

an = g =
v2

ρ
=

(30 cos 30)2

ρ
, ρ = 68.8 m

where the speed has been reduced to 30 cos 30 m for the vertical component that
now becomes null.

v̇ = at = 0 m/s2

Example 7.16 ([4], Prob. 2/112) Pin P in the crank PO engages the horizontal
slot in the guide C and controls its motion on the fixed vertical rod. Determine
the velocity ẏ and the acceleration ÿ of guide C for a given value of the angle θ
if a) θ̇ = ω and θ̈ = 0 and b) if θ̇ = 0 and θ̈ = α.

Solution: Guide C will move up or down according to the motion of the
rotating crank PO. By the mechanical constraint that the pin P must always
be in the horizontal slot, their vertical motion must be identical. From the given
rotation of the crank, we may deduce the velocity and the acceleration at P as
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Figure 7.32: Solution to example 7.15

[v = rω] v = rω

[an = v2/r] an = rω2

[at = rα] at = 0

for case a) where θ̇ = ω and θ̈ = 0. The motion of P for case b) where
θ̇ = 0 and θ̈ = α may be computed similarly as

v = 0

an = 0

at = rα

As explained already, the projection of the velocity and the acceleration in
the vertical direction yield their counterparts of the guide. With the kinematic
vectors drawn in fig. 7.34, we would have

ẏ = rω sin θ, ÿ = rω2 cos θ

for case a), and
ẏ = 0, ÿ = rα sin θ

for case b).

Example 7.17 ([4], Prob. 2/129) The pin P is constrained to move in the slot-
ted guides that move at right angles to one another. At the instant represented,
A has a velocity to the right of 0.2 m/s which is decreasing at the rate of 0.75
m/s each second. At the same time, B is moving down with a velocity of 0.15
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Figure 7.33: Example 7.16 ([4], pp. 62)

Figure 7.34: Solution to example 7.16
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m/s which is decreasing at the rate of 0.5 m/s each second. For this instant,
determine the radius of curvature ρ of the path followed by P . Is it possible to
determine also the time rate of change of ρ.

Solution: Information about motion of pin P is described by the motion
of the slotted guides moving perpendicular to each other. Therefore the motion
provided is expressed implicitly in the x-y coordinate frame. We must transform
this description into the n-t coordinate frame so the radius of curvature may
be determined. Since guides A and B are moving relatively at the right angle,
their motion are independent. Additionally, their motions are imparted to pin
P . Therefore its velocity and acceleration, representing in the x-y coordinate
frame depicted in fig. 7.36, are

v = 0.2i− 0.15j

a = −0.75i + 0.5j

Recalling the basic fact that velocity vector lies along the t-axis, we are able to
determine its direction as shown in fig. 7.36. Then, we will be able to determine
the direction of the n-axis from the direction of the t-axis and the acceleration.
That is, it will be making right angle to the t-axis, where the positive direction
will be pointing to the side where the direction of the acceleration resides. As
a result, we will be able to completely indicate the n-t coordinate frame. See
fig. 7.36.

Knowing the orientation of the frame n-t with respect to frame x-y, the unit
vector et may be expressed as

et = 0.8i− 0.6j

Hence the acceleration components in the normal and tangential directions may
be determined as follow:

at = (a · et) et = −0.72i + 0.54j

an = a− at = −0.03i− 0.04j

Now we may determine the radius of curvature by

[an = v2/ρ] ρ = 0.252

0.05
= 1.25 m

For the question of determining ρ̇, consider the following kinematic relation
which contains this term;

at = v̇ = ρβ̈ + ρ̇β̇ = ρβ̈ + ρ̇

(

v

ρ

)
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Figure 7.35: Example 7.17 ([4], pp. 66)

Figure 7.36: Solution to example 7.17
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Currently, this equation has two unknowns, namely ρ̇ (the one we need) and β̈.
Therefore, ρ̇ cannot be determined until β̈ is known.

Example 7.18 ([3], Prob. 2/134) As a handling test, a car is driven through
the slalom course shown. It is assumed that the car path is sinusoidal and that
the maximum lateral acceleration is 0.7g. If the testers wish to design a slalom
through which the maximum speed is 80 km/h, what cone spacing L should be
used?

Solution: From the geometry of the path in fig. 7.37, we may write down
its equation as

y = 3 sinωx = 3 sin
(π

L
x
)

It is specified that the maximum lateral acceleration during the course is
an = 0.7g. Since an = v2/ρ, the value will be at peak if the velocity is maximum
and the radius of curvature becomes minimum. From the sketched sinusiodal
trajectory, the peak point of the waveform will have minimum radius of curvature.
Associated with the maximum speed of 80 km/h, the minimum value would be

ρmin =
v2
max

(an)max

=
(80× 10/36)2

(0.7g)
= 71.9 m

Now we need to think of some relations which will link the radius of curvature
ρ to the unknown cone spacing L. Since L is contained in the trajectory equation,
we may found the following relation from calculus to be helpful.

ρ =

(

1 + y′2)3/2

y′′

Differentiating the path equation above for y′ and y′′,

y′ = 3ω cos ωx, y′′ = −3ω2 sin ωx

Then evaluate them at the peaks (minimum radius of curvature) where ωx =
nπ/2, n = ±1,±3, ..., we have

y′ = 0, y′′ = ∓3ω2

Substitute these derivatives into the x-y-frame radius of curvature formula, and
solve for the desired L:

∓71.9 =
1

∓3ω2

ω = 0.0681 =
π

L
→ L = 46.14 m
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Figure 7.37: Example 7.18 ([3], pp. 67)

Example 7.19 A particle starts from rest at the origin and moves along the
positive branch of the curve y = 2x3/2 so that the distance s measured from the
origin along the curve varies with the time t according to s = 2t3, where x, y,
and s are in millimeters and t is in seconds. Find the magnitude of the total
acceleration of the particle when t = 1 s.

Solution: Recall that the curvilinear motion is the extension of the straight
line motion with the normal acceleration added. Therefore along the tangential
direction, we have

s = 2t3, v = ṡ = 6t2, at = v̇ = 12t

To determine the total acceleration, we need the normal acceleration which
may be calculated by

an =
v2

ρ
& ρ =

(

1 + y′2)3/2

y′′

For the specified path equation of

y = 2x3/2

we have

y′ = 3
√

x & y′′ =
3

2
√

x

Therefore, the coordinate x, i.e. the location where we would like to evaluate the
radius of curvature, must be known first.

However the elapsed time is given instead. Consequently, the relationship
between the traveling distance, coordinates, and time must be established. Rela-
tion between distance traveled and time are specified to be s = 2t3. When t = 1
second, the traveled distance is 2 mm.

The link between the distance traveled and its coordinates may be determined
from the differential geometry as

∫

ds =

∫
√

(dx)2 + (dy)2 =

∫
√

1 + (y′)2dx
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Substitute y′ (x) for this particular path into the above relation and solve for x,
we then have

2 =

∫ x

0

√
1 + 9xdx

x = 0.913 mm, y = 1.746 mm

Now we are ready to determine the total acceleration at t = 1 second. From
the above equations, at that time, v = 6 mm/s and at = 12 mm/s2. From the
path integration, x = 0.913 mm, y′ = 2.8665, y′′ = 1.57, and so ρ = 17.8 mm.
The normal acceleration now can be determined as

an =
62

17.8
= 2.02 mm/s2

Consequently the total acceleration becomes

a =
√

a2
n + a2

t =
√

2.022 + 122 = 12.17 mm/s2

7.6 Polar Coordinates (r − θ)

Another intrinsically moving coordinate system is the polar coordinate system. It
is, in some respect, comparable to the previous normal and tangential coordinate
system. Nevertheless, it has its own use especially in navigation system. In fact,
the polar coordinate system is a degenerated version of the three dimensional
spherical coordinate system.

Refer to fig. 7.38. To set up the polar, or r-θ, coordinate frame, it is a
prerequisite to decide the reference origin and the reference direction. In the
figure, we employ the x-y coordinate frame, where its origin and the x-axis act as
the references. Suppose the particle is currently at point A. The origin of the r-θ
frame is located right at the particle. The positive radial direction, denoted as
r, lines up with the line connecting the reference origin and the r-θ frame origin.
Then, the θ-axis will be perpendicular to the radial direction, of which its positive
direction is selected to be in the same way as the particle moves along the path.
The unit vectors associated with the r and θ axes are er and eθ respectively.

We are now ready to analyze fundamental kinematic parameters represented
in the r-θ coordinate frame. Contrary to the n-t coordinate frame, position of the
particle is not zero because we have set up additional references for the absolute
location of the particle. The particle is located by the radial distance r from the
origin and by the angle θ to the reference direction. As a result, the absolute
position of the particle may be described by

r = ret (7.23)

Note that the angle θ is implicitly used to fixate the direction of er.
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Figure 7.38: r-θ coordinate frame attached to the particle and the x-y reference
coordinate frame ([3], pp. 68)

Since this is the absolute position, the velocity may be determined by differ-
entiating the above expression to obtain

v = ṙ = ṙer + rėr

which can be further resolved into fundamental terms. Consider the change in
er, which is a free unit vector. Therefore, the change of the vector will come from
the change in its direction only. Figure 7.39 illustrates er (and eθ) being rotated
by the small angle dθ to a new vector e

′

r. Difference between these two vectors
is the vector der:

der = |er| dθeθ = dθeθ

Taking the limit as time duration approaches zero, we have

ėr = θ̇ėθ (7.24)

As a corollary, we also have
ėθ = −θ̇ėr (7.25)

With these relationships, we may decompose the velocity into r- and θ-
components as

v = ṙer + rθ̇eθ (7.26)

A glimpse on the equation may give us physical understanding of what’s going
on. The r-component of the velocity, vr = ṙ, involves the change of the radial

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/rt_coord.eps


7.6 Polar Coordinates (r − θ) 232

Figure 7.39: Change in er and eθ by the infinitesimal rotation ([3], pp. 68)

distance. Hence it shows how fast the position vector r contracts or stretches.
About the θ-component, vθ = rθ̇ will be non-zero if the position vector is ro-
tating. Therefore vθ indicates the change of the position vector’s direction. The
magnitude of the velocity is readily calculated due to the orthogonality of the
axes:

v =
√

v2
r + v2

θ

Differentiating the velocity to determine the acceleration and applying the
expressions for the time rate of change of the unit vectors, we have

a = v̇ = (r̈er + ṙėr) + (ṙθ̇eθ + rθ̈eθ + rθ̇ėθ)

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ (7.27)

One may reach the same expression on the acceleration by the graphical ap-
proach. Consider small changes in magnitude and direction of both velocity
components depicted in fig. 7.40. Change in the magnitude of vr is the vector
(dṙ)er. However change in the direction of vr (caused by the small rotation dθ) is
the vector (ṙdθ)eθ. In the same vein, change in the magnitude of vθ is the vector
(

d(rθ̇)
)

eθ. Lastly, change in the direction of vθ is the vector (−rθ̇dθ)er. As the

time duration approaches zero, we may employ the definition of differentiation
to conclude the same expression on the acceleration.

From this analysis, we will understand thoroughly the cause of each acceler-
ation component. The r-component of the acceleration, ar = r̈ − rθ̇2, indicates
the change in magnitude of vr and the change in direction of vθ. About the
θ-component, the change in direction of vr or the change in magnitude of vθ will

cause the non-zero accleration component aθ = rθ̈+2ṙθ̇ = 1
r

d(r2 θ̇)
dt

. Note the term

2ṙθ̇ in aθ. It combines two effects of changing in both magnitude (of vθ) and
direction (of vr) of the velocity. The change in the radial distance and the angle
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Figure 7.40: Infinitesimal change in the velocity and the relationship with the
acceleration represented in r-θ coordinate system ([3], pp. 69)

must neither be null for this Coriolis acceleration to be non-zero. The magnitude
of the acceleration is readily calculated due to the orthogonality of the axes:

a =
√

a2
r + a2

θ

One final note is that ar 6= v̇r and aθ 6= v̇θ. This is because we must also
account for change in the direction of both vr and vθ, which are ṙθ̇ along eθ and
−rθ̇2 along er, respectively.

Example 7.20 ([3], Prob. 2/147) The rocket is fired vertically and tracked by
the radar shown. When θ reaches 60◦, other corresponding measurements give
the values r = 9 km, r̈ = 21 m/s2, and θ̇ = 0.02 rad/s. Calculate the magnitudes
of the velocity and acceleration of the rocket at this position.

Solution: At the position where θ = 60◦, the r-θ frame may be set up as
shown in fig. 7.42. From the problem statement, the velocity and acceleration
vectors point vertically upward. Therefore we may relate their geometric
projections to the kinematic relationships as

vθ = v sin 30 = rθ̇ = 9000× 0.02 → v = 360 m/s

ar = a cos 30 = r̈ − rθ̇2 = 21− 9000× 0.022 → a = 20.09 m/s2

Example 7.21 ([3], Prob. 2/151) Link AB rotates through a limited range of
the angle β, and its end A causes the slotted link AC to rotate also. For the
instant represented where β = 60◦ and β̇ = 0.6 rad/s constant, determine the
corresponding values of ṙ, r̈, θ̇, and θ̈.
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Figure 7.41: Example 7.20 ([3], pp. 75)

Figure 7.42: Solution to example 7.20
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Solution: Motion of A is specified in terms of n-t coordinate system’s pa-
rameters. The problem then asks for its description in r-θ coordinate system
instead. Therefore, we first set up these two coordinate frames as depicted
in fig. 7.44. Then we exploit the fundamental property of the kinematical
parameters that are frame invariant. As a result, its velocity may be determined
as

[

v = ρβ̇
]

v = 0.15× 0.6 = 0.09 m/s along + t-direction

Since link AB rotates with constant angular velocity, β̈ = 0 and hence
at = ρβ̈ + ρ̇ + β̇ = 0. Consequently, the acceleration of A comes from the normal
acceleration solely.

[

an = ρβ̇2
]

a = an = 0.15× 0.62 = 0.054 m/s2 along + n-direction

These vectors will be equivalently represented in terms of r-θ coordinate sys-
tem with its reference origin at C and horizontal reference line. At this instant,
r = 0.15 m and θ = 60◦ by geometry calculation. With the aid of fig. 7.44, the
velocity may be written in terms of its r- and θ-components as

v = vr + vθ = v cos 30er − v sin 30eθ = ṙer + rθ̇eθ

We may then solve for the time derivatives of the coordinates:

ṙ = 0.078 m/s, θ̇ = −0.3 rad/s

Similarly, we decompose the acceleration to the r- and θ-directions, and equate
them to the expressions relating to r, θ, and their derivatives.

a = ar + aθ = −a sin 30er − a cos 30eθ = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ

Hence,
r̈ = −0.0135 m/s2, θ̈ = 2.31× 10−4 rad/s2

Example 7.22 ([4], Prob. 2/150) The slotted arm OA forces the small pin to
move in the fixed spiral guide defined by r = Kθ. Arm OA starts from rest
at θ = π/4 and has a constant counterclockwise angular acceleration θ̈ = α.
Determine the magnitude of the acceleration of the pin when θ = 3π/4.

Solution: First of all, the pin P is constrained to move in the fixed spiral
guide. This implies that the path of the pin described in r-θ coordinates shall be

r = Kθ
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Figure 7.43: Example 7.21 ([3], pp. 76)

Figure 7.44: Solution to example 7.21
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Figure 7.45: Example 7.22 ([4], pp. 76)

Because K is constant, the following velocity and acceleration equations result:

ṙ = Kθ̇, r̈ = Kθ̈

Some information regarding to θ and its derivatives has been given. The
motion lasts from θ = π/4 to θ = 3π/4, with the constant angular acceleration
θ̈ = α. With the motion start from rest, θo = 0. Therefore we may be able to
compute the ending angular velocity from

[

θ̇2 = θ̇2
o + 2θ̈ (θ − θo)

]

θ̇2 = 2α
(

3π
4
− π

4

)

= πα

The r-coordinate and its derivatives at the ending may be computed from the
path equations shown above. The results are

r = 3Kπ/4, ṙ = K
√

πα, r̈ = Kα

All parameters related to calculating the acceleration are now determined.
Therefore the acceleration of the pin when θ = 3π/4 is

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ

Substituting the parameter values and calculate for the magnitude, we have

a = 10.753Kα

Example 7.23 ([3], Prob. 2/160) The circular disc rotates about its center
O with a constant angular velocity ω = θ̇ and carries the two spring-loaded
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plungers shown. The distance b that each plunger protudes from the rim
of the disc varies according to b = bo sin 2πnt, where bo is the maximum
protusion, n is the constant frequency of oscillation of the plungers in the radial
slots, and t is the time. Determine the maximum magnitudes of the r- and θ-
components of the acceleration of the ends A of the plungers during their motion.

Solution: We will apply the acceleration expression in determining the
value at point A. To do so, we need to evaluate the r, θ parameters and their
derivatives, for which we shall start from the position level. Position of the point
A is conveniently described using (r, θ) coordinates. With the reference point O
at the center point of the disc, the expression for the radial distance becomes

r = ro + b = ro + bo sin 2πnt

Differentiating it with respect to time, we have

ṙ = 2πnbo cos 2πnt, r̈ = − (2πn)2 bo sin 2πnt

For θ-coordinate, the disc is rotating with constant angular velocity. There-
fore,

θ̇ = ω, θ̈ = 0

Substitute the above parameters into each acceleration component’s expres-
sion:

ar = r̈ − rθ̇2 = −roω
2 −

(

4π2n2 + ω2
)

bo sin 2πnt

aθ = rθ̈ + 2ṙθ̇ = 4πnωbo cos 2πnt

Their maximum magnitude may then be determined by recognizing the maximum
value of sine or cosine function is 1. Hence

|ar|max = roω
2 +

(

4π2n2 + ω2
)

bo

|aθ|max = 4πnωbo

Example 7.24 ([3], Prob. 2/164) The small block P starts from rest at
time t = 0 at point A and moves up the incline with constant acceleration a.
Determine ṙ and θ̇ as a function of time.

Solution: The block moves with constant acceleration allows us to apply
the instant formula for the velocity and displacement. Because the block starts
from rest, the displacement s measured from A follows

s =
1

2
at2
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Figure 7.46: Example 7.23 ([3], pp. 78)

This motion described in (r, θ) coordinates may be achieved by considering
the geometry of the relevant parameters in fig. 7.47. Accordingly, one may write

x = R + s cos α = R +
at2

2
cos α, ẋ = at cos α

y = s sin α =
at2

2
sin α, ẏ = at sin α

Therefore the radial distance indicating the position of block P relative to O,
after simplification, is

r2 = x2 + y2 = R2 + Rat2 cos α +
a2t4

4

Differentiating the relation with respect to time and solve for the required ṙ, we
have

2rṙ = 2Rat cos α + a2t3

ṙ =
at (2R cos α + at2)

2
√

R2 + Rat2 cos α + a2t4

4

For determining θ̇, one may start from the following relation

tan θ =
y

x

Differentiating the equation,

θ̇ sec2 θ =
xẏ − yẋ

x2

Substituting the following relation

sec2 θ =
1

cos2 θ
=

r2

x2
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Figure 7.47: Example 7.24 ([3], pp. 79)

into the above equation, we finally have

θ̇ =
xẏ − yẋ

r2
=

Rat sin α

R2 + Rat2 cos α + a2t4

4

Example 7.25 ([4], Prob. 2/159) The block P slides on the surface shown with
constant speed v = 0.6 m/s and passes point O at time t = 0. If R = 1.2 m,
determine the following quantities at time t = 2 (1 + π/3): r, θ, ṙ, θ̇, r̈, and θ̈.

Solution: The block slides with constant speed. Hence the distance trav-
eled after t = 2 (1 + π/3) sec is

s = vt = 0.6× 2 (1 + π/3) = 1.2 + 0.4π

Since the length of the horizontal floor is 1.2 m, the block moves up the
quarter guide by 0.4π m, for which the corresponding position of the block may
be located with the angle

θ =
0.4π

1.2
=

π

3
= 60◦

measured from the vertical downward line in counter-clockwise direction.
To determine kinematical parameters of (r, θ) coordinates, we need to start

from the problem’s geometry. Referring to fig. 7.48, at this position,

x = R + R cos 30 = 2.239 m, y = R− R sin 30 = 0.6 m

With these (x, y) intermediate coordinates, the polar coordinate description may
be calculated with ease as

r =
√

x2 + y2 = 2.318 m, θ = tan−1 y

x
= 15◦
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Figure 7.48: Example 7.25 ([4], pp. 78)

For the velocity, we may employ the n-t description due to the information
given and the circular path with known geometry. At θ = 60◦, the constant
velocity of 0.6 m/s has the direction as depicted in fig. 7.49. With the overlaying
of the n-t and r-θ coordinate frames, we may project the velocity onto r- and
θ-directions, and recall the formula to solve for the derivative parameters as
follow.

[vr = ṙ] v cos 45 = ṙ = 0.424 m/s

[

vθ = rθ̇
]

v sin 45 = 1.2× θ̇, θ̇ = 0.183 rad/s

The acceleration of an object under circular motion with constant velocity is
the centrifugal acceleration towards the center point. See fig. 7.49. Its magnitude
is

[

an = v2

ρ

]

an = 0.62

1.2
= 0.3 = a

This may be decomposed into r- and θ-direction for which r̈ and θ̈ may
be resolved.

[

ar = r̈ − rθ̇2
]

−0.3 cos 45 = r̈ − 1.2× 0.1832, r̈ = −0.134 m/s2

[

aθ = rθ̈ + 2ṙθ̇
]

0.3 sin 45 = 1.2θ̈ + 2× 0.424× 0.183, θ̈ = 0.0245 rad/s2

Example 7.26 ([4], Prob. 2/160) The slotted arm OA oscillates about O
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Figure 7.49: Solution to example 7.25

within the limits shown and drives the crank CP through the pin P . For an
interval of the motion, θ̇ = K, a constant. Determine the magnitude of the
corresponding total acceleration of P for any value of θ within the range for
which θ̇ = K. Use polar coordinates r and θ. Show that the magnitudes of the
velocity and acceleration of P in its circular path are constant.

Solution: The analysis will be start from the underlying geometry. The r-
and θ-coordinates must always form the isosceles triangle OCP as drawn in
fig. 7.51. Therefore β = 2θ. It is given that the slotted arm OA rotates with
the constant angular velocity θ̇ = K. Consequently, the change of β may be
determined as

β̇ = 2K, β̈ = 0

From the mechanism constraint, pin P moves along the circular path centering
at C with the radius b and angle β. Therefore its velocity and acceleration may
be determined as

v = ρβ̇ = 2bK = constant

an = v2/ρ = 4bK2, at = v̇ = 0

a = 4bK2 = constant

Example 7.27 ([3], Prob. 2/169) The earth satellite has a velocity v = 17, 970
km/h as it passes the end of the semiminor axis at A. Gravitational attraction
produces an acceleration a = ar = −1.556m/s2 as calculated from the gravi-
tational law. For this position, calculate the rate v̇ at which the speed of the
satellite is changing and the quantity r̈.

Solution: The velocity must be tangent to the trajectory. With the satel-
lite position at one end of the vertical semiminor axis, the velocity is in
horizontal direction. Also, the n-t coordinate frame may be set up as depicted
in fig. 7.53. Because the only acceleration of the satellite comes from the
gravitational attraction, its direction points toward the earth along the radial
line.
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Figure 7.50: Example 7.26 ([4], pp. 79)

Figure 7.51: Solution to example 7.26
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Figure 7.52: Example 7.27 ([3], pp. 80)

As shown in fig. 7.53, we may expressed both the velocity and the acceleration
using r-θ coordinate system. Therefore, the rate v̇ may be determined from the
tangential acceleration:

at = −a cos 60 = v̇ = −0.778 m/s2

One may conjecture that the rate r̈ may be determined using the expression of
the radial acceleration. However, the rate θ̇ in the formula is not known yet. It
may be found from the velocity relationship:

vθ = v cos 30 = rθ̇, θ̇ = 2.7× 10−4 rad/s

Substituting its value into the following relation, r̈ may now be solved.

ar = a = −1.556 = r̈ − rθ̇2, r̈ = −0.388 m/s2

Example 7.28 ([4], Prob. 2/163) Pin A moves in a circle of 90 mm radius as
crank AC revolves at the constant rate β̇ = 60 rad/s. The slotted link rotates
about point O as the rod attached to A moves in and out of the slot. For the
position β = 30◦, determine ṙ, r̈, θ̇, and θ̈.

Solution: Motion of point A may be determined naturally using n-t coor-
dinate system. Alternatively, the r-θ coordinate system may be used. At the
current posture, two frames are oriented relative to each other as shown in
fig. 7.55. Accordingly, the velocity lies along the t-axis and, due to the constant
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Figure 7.53: Solution to example 7.27

rotating rate of the crank AC, the acceleration points along the normal axis
toward the center of rotation C.

Since the velocity and acceleration analysis calls for the position informa-
tion as well, we will first employ the geometric constraint that the piston-crank
mechanism forms the triangular loop OAC. Using the cosine law, we have

r2 = 3002 + 902 − 2× 300× 90 cos 30, r = 226.57 mm

The angle θ may be determined from the sine law:

90

sin θ
=

r

sin 30
, θ = 11.46◦

The velocity and acceleration of A may be determined from the given infor-
mation in n-t system as

v = ρβ̇ = 0.09× 60 = 5.4 m/s

a = an = v2/ρ = 5.42/0.09 = 324 m/s2

Decompose these vectors into r- and θ-components and match them with the
expression in r-θ coordinates, we may solve for the derivatives of the parameters.

vr = v cos 48.54 = ṙ = 3.575 m/s

vθ = v sin 48.54 = rθ̇, θ̇ = 17.86 rad/s

ar = a cos 41.46 = r̈ − rθ̇2, r̈ = 315 m/s2

aθ = −a sin 41.46 = rθ̈ + 2ṙθ̇, θ̈ = −1510 rad/s2
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Figure 7.54: Example 7.28 ([4], pp. 80)

Figure 7.55: Solution to example 7.28
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Example 7.29 ([4], Prob. 2/166) If the slotted arm is revolving CCW at the
constant rate of 40 rev/min and the cam is revolving clockwise at the constant
rate of 30 rev/min, determine the magnitude of the acceleration of the center of
the roller A when the cam and arm are in the relative position for which θ = 30◦.
The limacon has the dimensions b = 100 mm and c = 75 mm.

Solution: Polar equation of the cam profile (limacon type), r = b − c cos θ
is given. Therefore the appropriate coordinate system for this problem should
be r-θ. However the angle in the coordinate must be measured with respect to
a fixed reference direction. In other words, it must be the absolute angle. Since
the cam is not fixed, the angle used in the equation must be compensated for
this relative motion.

Let the angle θ be the positive CCW angle the slotted arm made with the
horizontal reference line and β be the positive CW angle the concave of the
cam made with the same horizontal reference line. Then, the limacon equation
becomes

r = b− c cos (θ + β)

which, by the physical installation of the mechanism, indicates the radial distance
of the roller A.

The angular velocity of the slotted arm and the cam are given to be constant
of 40 and 30 rev/min, respectively. Hence, when the arm rotates to the position
that θ = 30◦, the corresponding angle that the cam travels may be determined
from the fact that the time spent are equal. For the slotted arm, the time spent is

[

ω = dθ
dt

]

∫ π/6

0
dθ =

∫ t

0
θ̇dt, t = 0.125 s

For the cam, the angle rotated is

∫ β

0
dβ =

∫ 0.125

0
β̇dt, β = 0.393 rad = 22.5◦

Therefore, the current radial distance is

r = 0.1− 0.075 cos (30 + 22.5) = 54.3 mm

Since the second derivative of θ and β are zero, the derivatives of r may be
straightforwardly determined as

ṙ = c
(

θ̇ + β̇
)

sin (θ + β) = 0.436

r̈ = c
(

θ̇ + β̇
)2

cos (θ + β) = 2.453

Note that the angular coordinate to describe the roller is θ, not θ + β. Now
the acceleration may be evaluated:

ar = r̈ − rθ̇2 = 2.453− 0.0543 (40× 2π/60)2 = 1.5 m/s2
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Figure 7.56: Example 7.29 ([4], pp. 80)

aθ = rθ̈ + 2ṙθ̇ = 2× 0.436× (40× 2π/60) = 3.653 m/s2

a =
√

a2
r + a2

θ = 3.95 m/s2

7.7 Relative Motion (Translating Axes)

Motion of the objects in general are compound, i.e. they are both translating
and rotating at the same time. Nevertheless, these complicated motion can be
made easy by observing them with respect to the moving reference frames. For
example, the absolute motion of the piston inside the engine block of a car going
along the curvy road is difficult to describe. However, we will see the piston
simply moves up and down along the cylinder had the observer been fixed with
the engine block.

The motion seen is the relative motion. The absolute motion may be deter-
mined by combining the observed relative motion with the absolute motion of
the moving reference frame. Hence, the strategy used is actually the ‘divide and
conquer’. The convolved absolute motion has been broken up into the relative
motion and the easier absolute motion. As a consequence, it is quite crucial to
select the appropriate moving frame for a specific problem.

We need to specify the observer frame first. The observer frame may, in
general, be moving in both the translation and the rotation manner. However, as
for an introduction to the relative motion, we will constrain the analysis to the
one in plane motion which use the pure translation moving reference frame. This
simply means that the relative motion will be observed on the moving reference
frame that has no rotation.

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_7_29.eps


7.7 Relative Motion (Translating Axes) 249

Figure 7.57: Absolute and relative motion of A with respect to B using the pure
translating moving coordinate frame {xy} ([3], pp. 91)

Consider fig. 7.57. Motion of A is observed from B where the measurements
made are referenced with the pure translating moving coordinate frame {xy}. Its
relative position of A with respect to B is denoted by the vector rA/B. We would
like to determine the absolute position referenced with the fixed reference frame
{XY }. Note that the axes of {XY } and {xy} is not necessary to be parallel to
each other.

Let the absolute position vector of A and B (the origin of the observer frame)
be rA and rB respectively. From the figure, we can set up the vector equation as

rA = rB + rA/B (7.28)

which is frame independent. The separation between the vector and its descrip-
tion (which ties with the chosen frame) must be kept in mind. However, one must
ensure the consistency of the description for all vector terms in a vector equa-
tion. If the vectors are originally represented in different frames, transformation
between the two frames are required to make the equation be consistent. For
rA/B, it is commonly described in the moving frame {xy}, which may be written
explicitly as

rA/B = xi + yj (7.29)

Differentiating eq. 7.28 to obtain the relative velocity equation:

vA = vB + vA/B (7.30)

vA and vB are the absolute velocity of A and B while vA/B is the relative velocity
of A with respect to B. Its explicit expression is

vA/B = ẋi + xi̇ + ẏj + yj̇ = ẋi + ẏj (7.31)

by denoting that {xy}’s motion is pure translation and so i’s and j’s direction do
not change.
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Similar arguments, that shall be skipped, may be used to derive for the relative
acceleration equation:

aA = aB + aA/B (7.32)

and
aA/B = ẍi + ÿj (7.33)

It is trivial to show for the relative motion with the pure translating coordinate
frame that

rB/A = −rA/B, vB/A = −vA/B, aB/A = −aA/B (7.34)

Lastly, if the pure translating moving frame has constant velocity, aB = 0. From
the relative acceleration equation, we can conclude that aA = aA/B. Implication
of this result is that the determination of the absolute acceleration can also be
made on the inertial frame, a pure translating frame that has no acceleration.
Consequently, Newton’s 2nd law of motion holds in the inertial as well as in the
fixed reference frame.

Example 7.30 ([3], Prob. 2/195) The car A has a forward speed of 18 km/h
and is accelerating at 3m/s2. Determine the velocity and acceleration of the car
relative to observer B, who rides in a nonrotating chair on the ferris wheel. The
angular rate ω = 3 rev/min of the ferris wheel is constant.

Solution: Because the observer B rides in a nonrotating chair, car A is
observed through the pure translating moving coordinate frame. Velocity and
acceleration of the car are given to be

vA = 18× 10

36
i = 5i m/s

and
aA = 3i m/s2

using the x-y coordinate frame depicted in fig. 7.58.
The observer B is moving in circular motion. Hence his velocity and acceler-

ation may be calculated from the specified angular velocity and acceleration of
the ferris wheel:

vB = ρβ̇ (cos 45i− sin 45j) = 2i− 2j m/s

and
aB = ρβ̇2 (− cos 45i− sin 45j) = −0.628i− 0.628j m/s2

on the fact that the tangential component is null due to constant angular
velocity. Consequently, the velocity and acceleration of A relative to B may be
determined directly as
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Figure 7.58: Example 7.30 ([3], pp. 96)

[

vA/B = vA − vB

]

vA/B = 5i− (2i− 2j) = 3i + 2j m/s

[

aA/B = aA − aB

]

aA/B = 3i− (−0.628i− 0.628j) = 3.628i + 0.628j m/s2

Example 7.31 ([3], Prob. 2/197) Hockey player A carries the puck on his stick
and moves in the direction shown with a speed vA = 4 m/s. In passing the puck
to his stationary teammate B, by what shot angle α should the direction of his
shot trail the line of sight if he launches the puck with a speed of 7 m/s relative
to himself?

Solution: The puck must be passed from the player A to B with the di-
rection being 45◦ relative to his movement. Because the player A is moving, he
will see the puck moving in the direction of (45 + α)◦ instead. See the relevant
velocity diagram corresponding to the relative velocity relationship

vP = vA + vP/A

in fig. 7.60. Using the law of sine with this triangle, the shot angle α may be
determined:

7

sin 45
=

4

sin α
, α = 23.8◦

Example 7.32 ([3], Prob. 2/210) The aircraft A with radar detection equip-
ment is flying horizontally at 12 km and is increasing its speed at the rate of 1.2
m/s each second. Its radar locks onto an aircraft flying in the same direction
and in the same vertical plane at an altitude of 18 km. If A has a speed of 1000
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Figure 7.59: Example 7.31 ([3], pp. 97)

Figure 7.60: Solution to example 7.31
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km/h at the instant that θ = 30◦, determine the values of r̈ and θ̈ at this same
instant if B has a constant speed of 1500 km/h.

Solution: Since the velocity and acceleration of A and B are provided,
their relative motion may be determined. If we define the x-axis to be the
horizontal axis pointing to the right,

[

vB/A = vB − vA

]

vB/A = 1500× 10
36

i− 1000× 10
36

i = 138.89i m/s

[

aB/A = aB − aA

]

aB/A = 0− 1.2i = −1.2i m/s2

These relative vectors may be equivalently represented in other coordinate
frames, for which we choose the r-θ coordinate frame due to the required
parameters. The frame is conventionally affixed to B, depicted in fig. 7.61. We
may then decompose these vectors geometrically and equate them to the r-θ
parameters formulation. Hence the values of r̈ and θ̈ may be found.

[

v = ṙer + rθ̇eθ

]

138.89 cos 30er − 138.89 sin 30eθ = ṙer + rθ̇eθ

ṙ = 120.28 m/s, θ̇ = −5.787× 10−3 rad/s
[

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ

]

−1.2 cos 30er + 1.2 cos 60eθ = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ

r̈ = −0.637 m/s2, θ̈ = 1.66× 10−4 rad/s2

Example 7.33 ([3], Prob. 2/211) A batter hits the baseball A with an initial
velocity of vo = 30 m/s directly toward fielder B at an angle of 30◦ to the
horizontal; the initial position of the ball is 0.9 m above the ground level. Fielder
B requires 1

4
sec to judge where the ball should be caught and begins moving to

that position with constant speed. Because of great experience, fielder B choose
his running speed so that he arrives at the “catch position” simultaneously with
the baseball. The catch position is the field location at which the ball altitude
is 2.1 m. Determine the velocity of the ball relative to the fielder at the instant
the catch is made.

Solution: The ball was hit and then moved freely in the air subject to the
constant gravitational acceleration

a = −gj

This implies the zero acceleration component in the horizontal direction and
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Figure 7.61: Example 7.32 ([3], pp. 100)

Figure 7.62: Example 7.33 ([3], pp. 100)

hence its associated velocity is constant

vx = 30 cos 30i = 25.98i m/s

Vertical component of the velocity is changing with constant acceleration.
Hence the value at the catch position becomes

[v2 = v2
o + 2a(s− so)] v2

y = (30 sin 30)2 − 2g (2.1− 0.9)

vy = −14.19j m/s

Therefore the velocity of the ball at the catch position is

vA = 25.98i− 14.19j m/s
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To determine its relative velocity, the catcher’s velocity is necessary. This
may be determined using the fact that the time spent for both the ball and the
catcher is the same. Integrating the vertical component of the ball velocity during
the projectile motion, we obtain the relationship between the displacement and
the time spent:

[

s = so + vot + 1
2
at2
]

2.1 = 0.9 + (30 sin 30) t− 1
2
gt2

t = 2.976 s

With this information, the horizontal displacement of the ball is

[s = vt] sx = 30 cos 30× 2.976 = 77.32 m to the right of the batter

This implies, from fig. 7.62, that the catcher B must move by the dis-
tance 77.32− 65 = 12.32 m to the right, to meet the ball, in 2.976− 0.25 = 2.726
second; due to the idling thinking time. Hence the constant running velocity of
the catcher is

[v = s/t] vB = 12.32
2.726

= 4.52 i m/s

Consequently, the velocity of the ball relative to the catcher at the time
of catching is

[

vA/B = vA − vB

]

vA/B = (25.98i− 14.19j)− 4.52i = 21.46i− 14.19j m/s
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8.1 Introduction

This chapter is a continuation of the previous one where now the kinetics of
particles will be investigated. Kinetics is the study of the relations between the
forces and the motion. As for the introductory material, we will not seriously
concern whether the forces cause the motion or the motion generates the forces.
This is the issue called causality problem.

The object of interested in this chapter will be confined to the particles.
Relatively speaking, the body whose physical dimensions are so small compared
with the radius of curvature of its trajectory may safely be treated as the particle.

There are at least three approaches for solving the kinetics problems. They
are (a) Newton-Euler’s method (b) work and energy method and (c) momentum
method. Each has its own pros and cons. Nevertheless, we will be employing
only Newton-Euler’s method. Roughly, Newton’s law governs the force and trans-
lational motion while Euler’s law relates the moment to the rotational motion.
Since the concept of the rotation does not apply for the particle object, only
Newton’s second law of motion will be mentioned in this chapter.

8.2 Newton’s Second Law

Newton’s second law of motion states:

“The absolute acceleration of a particle is proportional to the resultant
force acting on it and is in the direction of this resultant force.”

This statement can be formulated as

ΣF = ma (8.1)

where m = mass (resistance to rate of change of velocity) of the particle
F = resultant force acting on the particle
a = resulting acceleration measured in a nonaccelerating

frame of reference

For most engineering problems on earth, the acceleration measured with re-
spect to the reference frame fixed to the earth’s surface may be treated as abso-
lute. Hence it may be used in Newton’s law. Sometimes, the absolute acceleration
may be determined via the use of relative motion. If the pure translating moving
reference frame is used, the (absolute) acceleration of A might be calculated from

aA = aB + aA/B

Another caveat about this empirical law is that it does not hold when the velocity
of the order of the speed of light is involved. In that case, reader is urged to refer
to advanced topic on theory of relativity.
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8.3 Equations of Motion

Newton’s second law of motion is typically used to formulate the equation of
motion. Because the equation is of vector type, one first need to decide which
coordinate system will be employed. Then, the vectorial equation can be decom-
posed into scalar equations accordingly. Since the equation involves the acceler-
ation, however, it is common to perform kinematic analysis prior to embark on
Newton’s law.

In the following, some common issues in applying Newton’s law will be
mentioned.

Two problems of dynamics
The problems involving using Newton’s second law may be classified into two
types called inverse and forward dynamics.

1. Inverse dynamic In this case, the kinematic conditions, such as coordinate
parameters and their derivatives, are specified. In turn, the corresponding
force will be determined. This problem is the straightforward application
of Newton’s law because the force term is explicitly separated. Regarding
to the unknown force, the equations are just simple algebraic equations.

2. Forward dynamic Conversely, the applied force are provided. Rather, the
resulting motion will be determined, whether at the instant or as a func-
tion of time.It is far more difficult to solve compared to the inverse dynamic
problems, because the type of equations are a system of differential equa-
tions. For simple form of forcing function, we may be able to determine the
closed form solution, as for the rectilinear motion problems. Unfortunately,
the force may be described as some function of mixing parameters of time,
displacement, velocity, and acceleration. Then, only the numerical solution
may be obtained.

Unconstrained motion
As the name suggested, unconstrained motion is the motion free of constraints.
Behavior of the motion is determined by the initial conditions and the explicit
external forces. A well known example would be the projectile motion. For
particle under free motion in general has three degrees of freedom. Therefore
three scalar equations of motion may be applied and integrated to obtain the
motion.

Constrained motion
In this case, motion of the particle is partially or totally constrained (and
determined) by restraining guides, for example. Its initial motion and explicit
external forces still influence the motion, of course. Hence all forces, i.e. both
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applied and reactive forces (or external force and interaction force with the
constraints), that act on the particle must be accounted for in Newton’s law of
motion. The number of degrees of freedom and associated differential equations
of motion may be reduced, depending on the type of constraints.

Free body diagram
In formulating the equations of motion, all forces acting on the particle need
to be accounted. Free body diagram, introduced in chapter 3, is a systematic
graphical method that unveils every force acting on the isolated body. Only
after the free body diagram has been completed should the equations of motion
be developed. The appropriate coordinate systems should be selected and
consistently employed throughout the problem. System involving with particles
only is particularly simple because there is no concept about dimension of the
particle. Implicitly, the relevant forces may be treated as concurrent acting
through the center of mass.

8.4 Rectilinear Motion

We will start from the simple case where the particle is constrained to move along
the straight line, i.e. the rectilinear motion. If the x-axis lies along with that
direction, we may apply Newton’s law component-wise as

ΣFx = max ΣFy = 0 ΣFz = 0

Unfortunately, sometimes we are not free to assign a coordinate axis along
the motion direction. In that case the nonzero acceleration component will be
shown up in all equations. The application of Newton’s law would become

ΣFx = max ΣFy = may ΣFz = maz

Additionally, in several cases, other coordinate systems, such as n-t or r-θ, might
be more appropriate.

Example 8.1 ([3], Prob. 3/19) The coefficient of static friction between the
flat bed of the truck and the crate it carries is 0.30. Determine the minimum
stopping distance s that the truck can have from a speed of 70 km/h with
constant deceleration if the crate is not to slip forward.

Solution: If the crate is not to slip forward, motion of it and the truck
must be the same at all time. This implies they must have the same acceleration.
Additionally, it is required that the truck decelerates with a maximum constant
deceleration that the crate still not slipping forward. This induces the friction
force between the truck bed and the crate to reach the maximum value. That is
the crate is on the impending status.
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Figure 8.1: Example 8.1 ([3], pp. 134)

To determine the deceleration, we draw the free body diagram of the crate
and assign the x-axis, as shown in fig. 8.2. By the Coulomb’s model of friction,
and the specified coefficient of static friction, µs, of 0.3, the static friction force
acting on the crate is

[Fs = µsN ] Fs = 0.3×mg

Applying Newton’s law along the x-direction, the unknown deceleration is
determined.

[ΣFx = max] −0.3mg = max, ax = −0.3g
which must be kept constant for the condition of minimum stopping distance
s. This is also the deceleration of the truck, from which we may determine its
traveling distance from the given velocity (70 km/h) before stopping.

[v2 = v2
o + 2a(s− so)] 0 =

(

70× 10
36

)2
+ 2 (−0.3g) s, s = 64.2 m

Example 8.2 ([3], Prob. 3/20) If the truck of previous problem comes to stop
from an initial forward speed of 70 km/h in a distance of 50 m with uniform
deceleration, determine whether or not the crate strikes the wall at the forward
end of the flat bed. If the crate does strike the wall, calculate its speed relative
to the truck as the impact occurs. Use the friction coefficients µs = 0.3 and
µk = 0.25.

Solution: From the result of the previous problem, we see that the stop-
ping distance of 50 m is less than the minimum value of 64.2 m for non-slipping
condition. Therefore the crate will slip. As a result, the motion of the truck and
the crate will not be the same. For the truck, its uniform deceleration is
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Figure 8.2: Solution to example 8.1

[v2 = v2
o + 2a(s− so)] 0 =

(

70× 10
36

)2
+ 2atruck × 50, atruck = −3.781 m/s2

which allows us to calculate the time used to stop:

[v = vo + a(t− to)] 0 =
(

70× 10
36

)

− 3.781tstop, tstop = 5.14 s

Consider the crate. With the material properties of the mating surface, the
static and kinetic friction force may be calculated as

[Fs = µsN ] Fs = 0.3mg = 2.943m

[Fk = µkN ] Fk = 0.25mg = 2.45m

Assume the crate and the truck go together as before, then atruck = acrate.
From the free body diagram of the crate (fig. 8.4), applying Newton’s law to
determine the required friction force:

[ΣFx = max] −F = m (−3.781)

which is greater than the static friction. This indicates the assumed situ-
ation is not possible. The crate must then slip and the friction drops to kinetic
friction. Re-applying Newton’s law, the acceleration of the crate may then be
determined.

[ΣFx = max] −2.45m = macrate, acrate = −2.45 m/s2

To determine whether the crate strikes the wall, the analysis must be based
upon the relative motion because both the truck and the crate move. Their
relative acceleration is
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Figure 8.3: Example 8.2 ([3], pp. 134)

[

ac/t = ac − at

]

ac/t = −2.45− (−3.781) = 1.331 m/s2

The crate is moving with forward acceleration relative to the truck. Hence it
will slip forward. So we need to determine whether it will strike the wall.

To do so, we will calculate the time that the crate need for traveling 3 m
relative to the truck bed. Since the relative acceleration is constant, relationship
between the displacement and the time spent is simplified to

s = so + vo(t− to) +
1

2
a(t2 − t2o)

Note that for this problem, the kinematical quantities in the formula refer to
their relative values. Therefore,

3 =
1

2
× 1.331× t2, tstrike = 2.123 s

is the time spent for the crate to hit the wall, which is less than the time for the
truck to come to stop. Consequently, the crate will strike the wall before the
truck stops. The relative speed as the impact occurs may be calculated from

[v = vo + a(t− to)] vc/t = 0 + 1.331× 2.123 = 2.826 m/s

Example 8.3 ([3], Prob. 3/23) If the coefficients of static and kinetic friction
between the 20-kg block A and the 100-kg cart B are both essentially the same
value of 0.50, determine the acceleration of each part for (a) P = 60 N and (b)
P = 40 N.

Solution: From our intuition, if we apply too strong pulling force, block A
will move relatively to the right of block B. However if the applied force is small
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Figure 8.4: Solution to example 8.2

enough, both blocks will move together. In either case, the free body diagram
will be as shown in fig. 8.6. The normal force between the blocks, NA, is to
balance the weight of block A. Therefore NA = 20g N. In turn, the maximum
supplied friction force (static) would be

Fmax = 0.5NA = 98.1 N

(a) Due to the cable-pulley arrangement, the effective pulling force is 120 N
which is greater than maximum resisting friction force Fmax. Hence block A
will slip forward relative to B. The corresponding friction force is the kinetic
frition, which happens to be equal to the static value for this problem. Their
accelerations are governed by Newton’s law:

[ΣFx = max] 120− 98.1 = 20aA, aA = 1.095 m/s2

98.1 = 100aB, aB = 0.981 m/s2

(b) Now the effective pulling force is 80 N which is less than Fmax. Hence
block A will not slip relative to B. Since they are moving together, we may treat
them as a unified block of 120 kg subject to the pulling force of 80 N. Therefore,
the acceleration becomes

[ΣFx = max] 80 = 120a, a = 0.667 m/s2

Developing friction force may be determined from either the isolated free
body diagram of block A or B. If we use block A, then

[ΣFx = max] 80− F = 20× 0.667, F = 66.67 N

which is less than Fmax. Hence the assumption is valid.
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Figure 8.5: Example 8.3 ([3], pp. 134)

Figure 8.6: Solution to example 8.3
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Figure 8.7: Example 8.4 ([4], pp. 132)

Example 8.4 ([4], Prob. 3/18) A simple pendulum is pivoted at O and is
free to swing in the vertical plane of the plate. If the plate is given a constant
acceleration a up the incline θ, write an expression for the steady angle β
assumed by the pendulum after all initial start-up oscillations have ceased.
Neglect the mass of the slender supporting rod.

Solution: When the pendulum reaches the steady state motion, it will
possess the same acceleration as of the plate, namely a upward the incline. From
the free body diagram in fig. 8.8, there are two forces, i.e. tension and gravity
force, acting on the concentrated swinging mass, with their lines of action shown.
Choosing the coordinate frame x-y aligning with its natural motion description,
Newton’s law may then be set up conveniently;

[ΣFy = 0] T cos β −mg cos θ = 0

[ΣFx = max] T sin β −mg sin θ = ma

From these algebraic trancendental equations, the steady angle β may be
determined.

β = tan−1

(

a + g sin θ

g cos θ

)

Example 8.5 ([3], Prob. 3/26) For the friction coefficients µs = 0.25 and
µk = 0.20, calculate the acceleration of each body and the tension T in the cable.

Solution: The constraint in this problem needs to be analyzed explicitly,
or we will not be able to relate the motion of A and B. We observe that the
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Figure 8.8: Solution to example 8.4

cable-pulley system constitutes the motion constraint, or the motion relationship,
between A and B. The constraint stems from the underlying property of the
cable that, no matter how the two blocks move, its length must be constant. Of
course, we assume that the elasticity of the cable can be neglected.

To relate this fact with the block motion, we must express its length in terms
of the block displacement. With additional assumptions that the cable is always
taut and there is no slipping between the cable and the pulley’s groove, we may
then write the cable’s length, l, as

sA + 2sB + c = l

where sA and sB are the displacement of A and B measured from the center of the
pulley positively along the incline (for A) and downward (for B). The constant
c is to take care for the portions that wrap around the pulleys, for example.
Differentiating the constraint equation to come at its acceleration form;

aA + 2aB = 0

Hence the downward motion of A will be twice as fast as the upward motion of
B, as one may understand.

For kinetic analysis, we start by drawing the free body diagram of both
objects. See fig. 8.10. Since block A involves with the friction force, one may
prepare for the calculation of the normal force and maximum supplied friction
force:

[ΣFy = 0] N = 60g cos 30 N

[Fmax = µsN ] Fmax = 0.25× 60g cos 30 = 127.4 N

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/sol_8_4.eps


8.4 Rectilinear Motion 267

We are not certain whether block A will move downward, so we assume it is
not yet moving but impends. That is block A is in equilibrium with the friction
force developing to the maximum value.

[ΣFx = 0] 60g sin 30− Fmax − T = 0, T = 166.9 N

This tension force is transmitted to block B, in which we may apply Newton’s
law to it:

[ΣFy′ = may′ ] 20g − 2T = 20ay′ , ay′ = −6.88 m/s2

indicating that block B is moving upward. This is in contradiction to the
static equilibrium assumption and the kinematic constraint. It therefore implies
that block A must be in motion. Now, should it be sliding upward or downward?
A little thought will help clarify. If A is up, B must be down. This requires
2T to be smaller than 20g. In turn, T will likely to be smaller than 60g sin 30.
Hence A will be down, which is not agree to the proposition.

Therefore, block A must go downward and B upward. The friction force
will become kinetic friction. Applying Newton’s law to block A and B, and
recognizing the kinematic constraint derived earlier, we have

[ΣFx = max] 60g sin 30− Fk − T = 60aA

[ΣFy′ = may′ ] 20g − 2T = 20aB

aA + 2aB = 0

Solving these three equations simultaneously, we have

T = 105.35 N, aB = −0.725 m/s2, aA = 1.45 m/s2

Example 8.6 ([3], Prob. 3/35) A bar of length l and negligible mass connects
the cart of mass M and the particle of mass m. If the cart is subject to a
constant acceleration a to the right, what is the resulting steady-state angle θ
that the freely pivoting bar makes with the vertical? Determine the net force
P (not shown) that must be applied to the cart to cause the specified acceleration.

Solution: Free body diagram of the cart and the pendulum are shown in
fig. 8.12. Because the system is to be considered when the pendulum attains the
steady angle, both travel with the same motion, i.e. the constant acceleration a
to the right. The suitable coordinate system is then the x-y coordinate frame
shown.
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Figure 8.9: Example 8.5 ([3], pp. 135)

Figure 8.10: Solution to example 8.5

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_8_5.eps
./figs/sol_8_5.eps


8.4 Rectilinear Motion 269

Figure 8.11: Example 8.6 ([3], pp. 137)

Applying the Newton’s law to the pendulum:

[ΣFy = 0] T cos θ −mg = 0, T = mg
cos θ

[ΣFx = max] T sin θ = ma, θ = tan−1
(

a
g

)

The applied force P may be determined from the equation of motion of the
cart:

[ΣFx = max] P − T sin θ = Ma, P = (m + M) a = (m + M) g tan θ

Example 8.7 ([3], Prob. 3/38) Determine the accelerations of bodies A and B
and the tension in the cable due to the application of the 300 N force. Neglect
all friction and the masses of the pulleys.

Solution: Free body diagram of A and B are drawn in fig. 8.14 where the
tension in the cable is denoted T . Let the positive displacement of each body be
in the direction measured from the referencing bump to the body. See fig. 8.14.
Applying Newton’s law to each of them in succession, we have

[ΣFx = max] −2T = 70aA

300− 3T = 35aB

There are three unknowns, namely aA, aB, and T . Hence another equation
is needed. It will be formed by the kinematic constraint. A and B cannot move
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Figure 8.12: Solution to example 8.6

Figure 8.13: Example 8.7 ([3], pp. 137)

independently, but are related by the cable-pulley mechanism. With the ideal
assumption of inelasticity and rolling without slipping, the cable length, l, may
be expressed as

2sA + 3sB + c = l

where c takes care of all constant lengths along the cable route. Differentiating
the relation, we obtain the acceleration relationship

2aA + 3aB = 0

that shall be used in solving for the unknowns. The answers would be

aA = −2.34 m/s2, aB = 1.56 m/s2, T = 81.8 N

Example 8.8 ([3], Prob. 3/45) The sliders A and B are connected by a light
rigid bar and move with negligible friction in the slots, both of which lie in a
horizontal plane. For the position shown, the velocity of A is 0.4 m/s to the
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Figure 8.14: Solution to example 8.7

right. Determine the acceleration of each slider and the force in the bar at this
instant.

Solution: Kinematic constraint of this problem is a little bit involved due
to the nonlinearity of the geometry. It can be formulated by observing that
motion of A and B are constrained by the 0.5 m bar. Altogether, they form the
shape-changing triangle OAB. Let the displacement of A and B, sA and sB, be
measured positively from the fixed apex O along the slots as shown in fig. 8.16.
For this particular instant,

sA = sB and 0.5 = sA cos 15 + sB cos 15

sA = sB = 0.2588 m

Change in sA and sB are governed by the cosine law as

l2 = s2
A + s2

B − 2sAsB cos 150

Differentiating the equation to obtain the velocity relationship, we have

0 = 2sAvA + 2sBvB − 2 cos 150 (sAvB + sBvA)

It is given that vA = 0.4 m/s. Substituting the value into the velocity constraint
equation, we have

vB = −0.4 m/s

agreeing with our intuition.
Differentiating the general velocity relationship to obtain the acceleration re-

lation which shall be incorporated with the result from the kinetic analysis:

0 = v2
A + sAaA + v2

B + sBaB − cos 150 (sAaB + sBaA + 2vAvB)
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Figure 8.15: Example 8.8 ([3], pp. 138)

Substitute all known kinematical parameters into the equation, we have the re-
lationship between aA and aB at this instant as

0 = 0.04287 + 0.4829aA + 0.4829aB

Kinetic analysis starts with the free body diagrams of both carts, which are
simple because of the assumption of light rigid bar and negligible friction. Also,
the system is oriented to lie in a horizontal plane which makes the gravity force
pointing perpendicularly to the paper. Hence it will not affect the planar motion
of the carts. Applying Newton’s law onto each cart along its traveling direction,
we have

[ΣF = ma] 40− T cos 15 = 2aA

−T cos 15 = 3aB

Combining both equations of motion with the constraint equation developed
above, we may solve for the tension and the accelerations

aA = 7.95 m/s2, aB = −8.04 m/s2, T = 25.0 N

Example 8.9 ([4], Prob. 3/46) With the blocks initially at rest, the force P is
increased slowly from zero to 260 N. Plot the accelerations of both masses as
functions of P .

Solution: Free body diagram of both blocks are sketched in fig. 8.18. First, we
calculate the normal forces, the static, and the kinetic frictions;

NA = 35g, NB = NA + 42g = 77g
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Figure 8.16: Solution to example 8.8

FAmax
= 0.2NA = 68.67 N, FBmax

= 0.15NB = 113.3 N

FAk
= 0.15NA = 51.5 N, FBk

= 0.10NB = 75.54 N

Next, we need to think of all possible situations of the motion of A and B.
There are totally 5 situations. Three of them are (a) no motion at all, (b) B
and A move together, and (c) B and A move separately. However, there are two
situations which are not possible. They are (d) B moves alone. This is because
FA will be developed to resist the motion. Hence it makes A to move eventually.
Another impossible situation is that (e) A moves alone. This is because the force
P is applied at block B in a slowly increasing fashion from zero. So it is unlikely
that FA will suddenly jump right to FAmax

, making block A to jerk and move
immediately while leaving block B immobile due to the counter-action of the
friction on the applied force.

To study the motion of both masses as functions of slowly increasing P , we
reason as follow;

1. For the applied force 0 ≤ P ≤ FBmax
, i.e. the applied force is less than

the maximum supplied friction force, the friction FB will be developed
accordingly to cancel with the applied force P . Hence FA will stay zero and
so both blocks will not move. Therefore for 0 ≤ P ≤ 113.3 N, aA = 0 and
aB = 0.

2. If we increase the applied force beyond FBmax
but below some value, block

A and B will go together as a single body. For this to be the case, it is
necessary that FA ≤ FAmax

(so sliding between A and B is not yet happen)
and FB = FBk

(so block B moves). Substitute these friction values into
the equation of motions, we have

[ΣF = ma] FA = 35a

P − FA − FBk
= 42a
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We may use these equations in determining the range of P that makes two
blocks go together. When P increases to the value of FBmax

= 113.3 N, FB

will drop from FBmax
= 113.3 N to FBk

= 75.54 N. Block B will then start
to move, for which we may apply the above equations of motion:

FA = 35a

113.3− FA − 75.54 = 42a

Consequently,
a = 0.49 m/s2, FA = 17.16 N

Note the values jump from zero to kick the blocks off from the resting state.

To determine the upper bound of P that block A and B still move together,
we use the fact that FA will be developed to FAmax

(so they are about to
slip relative to each other) when P reaches the upper limit. We may recall
the above equations of motion again:

68.67 = 35a

P − 68.67− 75.54 = 42a

Consequently,
P = 226.6 N, a = 1.962 m/s2

Between these extremum values, we may solve for the (common) accelera-
tion directly by viewing both blocks as a new single block of 77 kg. Hence,
the internal friction force FA vanishes and the acceleration

[ΣF = ma] P − FBk
= 77a, a = P−75.54

77

which is a linear function of P in the range of 113.3 ≤ P ≤ 226.6 N.

3. If we further increase the applied force P beyond 226.6 N, block A will
slide backward relative to B because increasing P will make B accelerates
more and more. Since A slips, FA will now drop to FAk

. Re-applying the
equations of motion again,

51.5 = 35aA

P − 51.5− 75.54 = 42aB

Therefore, with the applied force 226.6 < P ≤ 260 N, block A will move
with constant acceleration aA = 1.47 m/s2 by the kinetic friction. The
applied force P will affect only the acceleration of block B. The exact
expression of it is

aB =
P − 127.04

42
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Figure 8.17: Example 8.9 ([4], pp. 139)

Figure 8.18: Solution to example 8.9

which is a linear function of P . Plotting the functions of the accelerations
with respect to applied force, depicted in fig. 8.19, we see the jump in ac-
celeration again caused by the friction transition dropping from impending
to kinetic value.

Example 8.10 ([4], Prob. 3/47) The system is released from rest in the position
shown. Calculate the tension T in the cord and the acceleration a of the 30-kg
block. The small pulley attached to the block has negligible mass and friction.
(Suggestion: First establish the kinematic relationship between the accelerations
of the two bodies.)

Solution: We see that motion of both blocks are related by the cable-pulley
mechanism. Definitions of kinematic parameters are illustrated in fig. 8.21. The
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Figure 8.19: The acceleration of both masses

sliding block displacement x causes the change in the hypotenuse b of the right
triangle. In turn, this will make the hanging block to move, denoted as the
displacement y, according to the unchanged cable length. Mathematically,

b2 = c2 + x2

b + y = l

where c and l are some positive constants. Differentiating the relationship to
obtain the acceleration equations;

bḃ = xẋ and ḃ + ẏ = 0

ḃ2 + bb̈ = ẋ2 + xẍ and b̈ + ÿ = 0

At this instant, x
b

= 4
5

and ẋ = 0, ḃ = 0 since the system is released from rest.
Substituting these values into the constraint, we have

b̈

ẍ
=

4

5

Next, the kinetics aspect will be analyzed. Since the system involves friction,
of which its direction depends on the sliding direction, we assume that the cylinder
block moves downward. Hence the sliding block will move to the left due to the
constraint which causes the friction force to point rightward. Based on this
assumption, free body diagram of the objects may be drawn, as depicted in
fig. 8.21.
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Figure 8.20: Example 8.10 ([4], pp. 139)

Stating Newton’s law on the 30-kg block, we have

[ΣFy = may] T × 3
5
− T − 30g + N = 0, N = 30g + 2

5
T

[ΣFx = max] F − T × 4
5

= 0.25N − T × 4
5

= 30ẍ

For the 15-kg cylinder, its equation of motion is

[ΣFy = may] 15g − T = 15ÿ = −15b̈

Now we have two effective equations for three unknowns: T , ẍ, and b̈. One
more equation comes from the kinematic constraint. Substituting the acceleration
of b and x obtained from the equations of motion into it, we may solve for the
tension;

4

5
=

b̈

ẍ
=

(T/15− g)× 30

7.5g − 0.7T
, T = 137.9 N

And the acceleration of the block becomes

ẍ =
7.5g − 0.7T

30
= −0.766 m/s2

8.5 Curvilinear Motion

There are choices for the coordinate systems used in describing the curvilinear
motion, as studied in chapter 7. One may first need to decide the appropriate one,
depending mainly on the information given and seeking. Then, the kinematical
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Figure 8.21: Solution to example 8.10
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analysis must be carried out even its related quantities have not been asked for.
Note that the complete results might not yet be obtained.

After that, one may draw the helpful free body diagram and set up Newton’s
law along the axes of the selected coordinate frame. For typical ones, they are

x-y coordinate system:

ΣFx = mẍ

ΣFy = mÿ (8.2)

n-t coordinate system:

ΣFn = m
(

ρβ̇2
)

= m
(

v2/ρ
)

ΣFt = mv̇ (8.3)

r-θ coordinate system:

ΣFr = m
(

r̈ − rθ̇2
)

ΣFθ = m
(

rθ̈ + 2ṙθ̇
)

(8.4)

As the last word, the positive sense of the force and accceleration must be
consistent.

Example 8.11 ([3], Prob. 3/58) The member OArotates about a horizontal
axis through O with a constant counterclockwise velocity ω = 3 rad/s. As it
passes the position θ = 0, a small block of mass m is placed on it at a radial
distance r = 450 mm. If the block is observed to slip at θ = 50◦, determine the
coefficent of static friction µs between the block and the member.

Solution: While either r-θ or n-t coordinate system is equally suit for this
problem, the latter shall be adopted. Hence, the kinematic parameters right at
the time of slipping in n-t frame notation may be expressed as

ρ = 0.45 m, ρ̇ = 0

β = 50◦, β̇ = 3 rad/s, β̈ = 0

Note that ρ̇ = 0 because the block is not yet slipping. However ρ̈ 6= 0.
Free body diagram of the block is shown in fig. 8.23. Here it is assumed

that the block slides down relative to the member and hence the friction
points upward. Setting up the equations of motion and substituting the known
kinematic parameters, we have
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Figure 8.22: Example 8.11 ([3], pp. 145)

[ΣFt = mat] N −mg cos 50 = m(ρ̇β̇ + ρβ̈) = 0, N = mg cos 50

[ΣFn = man] mg sin 50− F = m(ρβ̇2)

At the slipping moment, F = Fs = µsN . From the second equation, direction
of the friction must be upward since the gravity force (mg sin 50) is greater than
the inertial force (mρβ̇2). Hence the assumed situation is correct. This means
the bar OA rotates too slow than required to keep the block stay at rest on the
bar. Friction will be developed to resist the block from sliding downward (i.e. to
match the resultant force with the inertial force).

Substitute the static friction value in the above equation, we may solve for
the friction coefficient.

mg sin 50− µsmg cos 50 = mρβ̇2, µs = 0.549

Example 8.12 ([3], Prob. 3/69) A 2-kg sphere S is being moved in a vertical
plane by a robotic arm. When the arm angle θ is 30◦, its angular velocity about
a horizontal axis through O is 50 deg/s CW and its angular acceleration is
200 deg/s2 CCW. In addition, the hydraulic element is being shortened at the
constant rate of 500 mm/s. Determine the necessary minimum gripping force P
if the coefficient of static friction between the sphere and the gripping surfaces is
0.5. Compare P to the minimum gripping force Ps required to hold the sphere
in static equilibrium in the 30◦ position.
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Figure 8.23: Solution to example 8.11

Solution: We will use r-θ coordinates in describing the motion of the sphere. The
frame is attached to the ball in the free body diagram as shown in fig. 8.25. The
unknowns are components of the friction force, Fr and Fθ. From the specified
kinematics, we may write

r = 1 m, ṙ = −0.5 m/s, r̈ = 0

θ = 30◦, θ̇ = −50× π

180
= −0.873 rad/s, θ̈ = 200× π

180
= 3.49 rad/s2

Setting up the equations of motion in r-θ frame,

[ΣFr = mar] −mg sin θ + 2Fr = m(r̈ − rθ̇2), Fr = 4.143 N

[ΣFθ = maθ] 2Fθ −mg cos θ = m(rθ̈ + 2ṙθ̇), Fθ = 12.859 N
The components are combined to obtain the friction force which, by the min-

imum gripping force condition, is the static friction. Therefore,

F =
√

F 2
r + F 2

θ = 13.51 = µsP = 0.5P, P = 27.02 N

If the robot is not moving at the same posture, the required minimum gripping
force will be generated purely just to cancel the gravity force, as depicted in
fig. 8.25. The friction force in that case may be determined as

2Fs = 2µsPs = 2× 0.5Ps = mg, Ps = 19.62 N

which is less than the moving arm case, as naturally expected.

Example 8.13 ([4], Prob. 3/78) A flatbed truck going 100 km/h rounds a
horizontal curve of 300 m radius inwardly banked at 10◦. The coefficient of static
friction between the truck bed and the 200 kg crate it carries is 0.70. Calculate
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Figure 8.24: Example 8.12 ([3], pp. 148)

Figure 8.25: Solution to example 8.12
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the friction force F acting on the crate.

Solution: The crate travels with the truck in a horizontal-planar circular
motion and so its admissible acceleration are in n-t directions, pointing toward
the center of the curve and perperdicular to the drawing of its free body diagram,
as illustrated in fig. 8.27. To meet these inertial forces, friction force has to be
directed down the slope. This implies the crate tends to slide up the truck bed
(being fling away).

In setting up the equation of motion, first we cast Newton’s second law along
the normal direction because the associated acceleration is known.

[ΣFn = mv2/ρ] N sin 10 + F cos 10 = m
300

(

100× 10
36

)2

Other direction that we know its motion is the vertical direction. Since it
is not moving,

[ΣFy = 0] −mg + N cos 10− F sin 10 = 0

Consequently, the developed normal and friction force would be

N = 2021.52 N, F = 165.9 N

It is necessary to check if this friction can be actually generated:

Fmax = 0.7N = 1415 N > F

Hence the required friction force of 165.9 N will be provided. Therefore the crate
tends to slide up due to high speed circular motion. However, it is still to far
from sliding up. We can increase the truck speed yet the crate does not move
relative to the truck bed.

Example 8.14 ([3], Prob. 3/79) The flatbed truck starts from rest on a road
whose constant radius of curvature is 30 m and whose bank angle is 10◦. If the
constant forward acceleration of the truck is 2 m/s2, determine the time t after
the start of motion at which the crate on the bed begins to slide. The coefficient
of static friction between the crate and the truck bed is µs = 0.3, and the truck
motion occurs in a horizontal plane.

Solution: First, free body diagrams of the crate for the static and dy-
namic case are drawn in fig. 8.29. After applying the equilibrium condition for
the static case, we may solve for the normal and friction force:

[ΣFy′ = 0] Ns = 200g cos 10 = 1932.2 N
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Figure 8.26: Example 8.13 ([4], pp. 150)

Figure 8.27: Solution to example 8.13

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ex_8_13.eps
./figs/sol_8_13.eps


8.5 Curvilinear Motion 285

[ΣFx′ = 0] F = 200g sin 10 = 340.7 N

upward to prevent sliding down the incline. We need to check whether
this friction force is actually realizable. The maximum static friction force is

Fs = 0.3Ns = 579.66 N

which is greater than the required friction.
When the crate is moving, the friction will not lie solely along the x′-direction

because the crate is moving along the horizontal-circular path. Nevertheless,
when it starts to slide, the magnitude of the friction force must be equal to
Fs = 0.3N . Therefore, we decompose the friction force along the x′- (downward
the truckbed to match the component of the normal inertial force down the
incline) and t-axis (pointing inward the paper) in association with the natural
axes of the crate motion relative to the truckbed. The components are named
Fsn and Fst respectively. See fig. 8.29.

Specified kinematic parameters of the crate may be expressed in n-t coordi-
nates as

ρ = 30 m, ρ̇ = 0, ρ̈ = 0

at = 2 m/s2

from which the velocity may be deduced:

[at = v̇] v = att = 2t

Next, applying Newton’s law along the y-, n-, and t-direction to arrive at the
equations of motion.

[ΣFy = 0] N cos 10− 200g − Fsn sin 10 = 0

[ΣFn = mv2/ρ] Fsn cos 10 + N sin 10 = 200×
(

4t2

30

)

[ΣFt = mat] Fst = 200× 2 = 400 N

There are three unknowns, namely N , Fsn, and t, with two effective
equations. The third equation may be formulated by recognizing that the magni-
tude of the friction must be equal to the static value when the crate begins sliding.

[F 2
sn + F 2

st = F 2
s ] F 2

sn + 4002 = (0.3N)2

Fsn =
√

0.09N2 − 160000

Substitute the expression into the equilibrium equation, the normal force
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Figure 8.28: Example 8.14 ([3], pp. 150)

may now be determined.

N = 2076.47, 1919.24 N

When the truck enters the curve, the normal acceleration is developed. From
the free body diagram, it is necessary that N > Ns to match the positive com-
ponent of the normal inertial force perpendicular to the incline. Therefore

N = 2076.47 N > Ns

The other variables may now be determined.

Fsn =
√

0.09× 2076.472 − 160000 = 477.55 N

Fst = 400 N

477.55 cos 10 + 2076.47 sin 10 = 200×
(

4t2

30

)

, t = 5.58 sec

Example 8.15 ([3], Prob. 3/77) The small object is placed on the inner surface
of the conical dish at the radius shown. If the coefficient of static friction between
the object and the conical surface is 0.30, for what range of angular velocities
ω about the vertical axis will the block remain on the dish without slipping?
Assume that speed changes are made slowly so that any angular acceleration
may be neglected.

Solution: Figure 8.31 shows free body diagrams of the problem for two
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Figure 8.29: Solution to example 8.14

cases, i.e. on the verge of slipping downward and upward for minimum and
maximum allowable angular velocity. Because the angular acceleration may be
neglected, the total static friction force (0.3N) points along the conical dish
as denoted by Fs. Their directions are oriented in a way to match with the
magnitude of the centerfugal acceleration.

With the specified kinematic parameters, we have

ρ = 0.2 m, ρ̇ = 0, ρ̈ = 0

For the minimum angular velocity, Newton’s law allows us to write

[ΣFy = 0] N cos 30 + 0.3N sin 30−mg = 0

[ΣFn = mrω2] N sin 30− 0.3N cos 30 = m(0.2ω2
min)

for which the minimum angular velocity becomes

ωmin = 3.405 rad/s

If the maximum angular velocity is applied, the equations of motion slightly
change to

[ΣFy = 0] N cos 30− 0.3N sin 30−mg = 0

[ΣFn = mrω2] N sin 30 + 0.3N cos 30 = m(0.2ω2
max)

for which the maximum angular velocity is

ωmax = 7.214 rad/s
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Figure 8.30: Example 8.15 ([3], pp. 150)

Figure 8.31: Solution to example 8.15

Therefore the angular velocity value between 3.405 < ω < 7.214 rad/s will not
make the block sliding.

Example 8.16 ([4], Prob. 3/82) The 2-kg slider fits loosely in the smooth slot
of the disk, which rotates about a vertical axis through point O. The slider is
free to move slightly along the slot before one of the wires becomes taut. If
the disk starts from rest at time t = 0 and has a constant clockwise angular
acceleration of 0.5 rad/s2, plot the tensions in wires 1 and 2 and the magnitude N
of the force normal to the slot as functions of time t for the interval 0 ≤ t ≤ 5 sec.

Solution: Kinematic will be performed prior to kinetic analysis. Since the
disc is rotating with constant clockwise angular acceleration of θ̈ = 0.5 rad/s2,
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with the zero initial conditions, the velocity and angle-time function become

θ̇ = 0.5t, θ = 0.25t2

From the installation, r = 0.1 m. Because the slider is constrained by the
strings to move slightly with respect to the disc, its motion may be treated as
same as the disk. Hence

ṙ = 0, r̈ = 0

Either one of the strings may be taut at an instant. So we assume that the
normal and tension force be acting along the indicated direction as depicted in
the free body diagram (fig. 8.33). This implies the first string being tensioned
and the second one slacked. Using the r-θ coordinate frame where O is the
reference point and the vertical line the reference direction, we may set up the
equations of motion as follow.

[

ΣFr = m(r̈ − rθ̇2)
]

−N cos 45− T cos 45 = 2
(

−0.1× (0.5t)2) = −0.05t2

[

ΣFθ = m(rθ̈ + 2ṙθ̇)
]

N sin 45− T sin 45 = 2 (0.1× 0.5) = 0.1

Thanks to the use of moving coordinate frame, we don’t have to worry
about the change in the direction of the normal and tension forces. We now can
solve for their values as a function of time.

N =
0.05t2 + 0.1√

2
, T =

0.05t2 − 0.1√
2

From the expressions, the normal force is always positive. Hence the assumed
direction is correct. For the tension force, it will be negative for t < 1.414 sec.
This is in accordance with our intuition that the inertial effect of the slider at the
beginning makes the second string to pull it along with the disc motion. After
that the slider motion will lead the disc, causing the first string being pulled. In
turn the second string becomes slack. In summary,

T1 =

{

0, 0 ≤ t ≤ 1.414 s
0.05t2−0.1√

2
, t > 1.414 s

T2 =

{

0.1−0.05t2√
2

, 0 ≤ t ≤ 1.414 s

0, t > 1.414 s

Plots of the tensions and normal force are shown in fig. 8.34.

Example 8.17 ([4], Prob. 3/89) A small rocket-propelled vehicle of mass m
travels down the circular path of effective radius r under the action of its weight
and a constant thrust T from its rocket motor. If the vehicle starts from rest at
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Figure 8.32: Example 8.16 ([4], pp. 151)

Figure 8.33: Solution to example 8.16
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Figure 8.34: Plots of tension wires and normal force acting on the slider

A, determine its speed v when it reaches B and the magnitude N of the force
exerted by the guide on the wheels just prior to reaching B. Neglect any friction
and any loss of mass of the rocket.

Solution: Free body diagram of the vehicle showing the gravity force, the
normal force, and the propulsion force in action is depicted in fig. 8.36. Because
the vehicle is moving along the constrained circular path, we decide to use n-t
coordinate frame. Newton’s law then gives the following governing equations:

[ΣFn = man] N −mg sin θ = mv2/r

[ΣFt = mat] T + mg cos θ = mat, at = T+mg cos θ
m

The unknowns are the normal force and velocity, which may be determined
from the velocity-acceleration relationship. With the vehicle starts from rest at
A, we have

[vdv = atds] v2/2 =
∫ θ

0
at(rdθ)

Substituting the value of tangential acceleration, the velocity written in
terms of the traveling angle θ is

v2 = 2r

(

Tθ

m
+ g sin θ

)
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Figure 8.35: Example 8.17 ([4], pp. 153)

Figure 8.36: Solution to example 8.17

Conseqently, the normal force is

N = 3mg sin θ + 2Tθ

At B, θ = π
2
. The corresponding velocity and normal force are

vθ= π
2

=

√

r

(

πT

m
+ 2g

)

Nθ= π
2

= 3mg + Tπ

Example 8.18 ([3], Prob. 3/100) A hollow tube rotates about the horizontal
axis through point O with constant angular velocity ωo. A particle of mass m is
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introduced with zero relative velocity at r = 0 when θ = 0 and slides outward
through the smooth tube. Determine r as a function of θ.

Solution: The angular motion of the tube may be expressed as

θ̇ = ωo, θ̈ = 0

Initially, r = 0, ṙ = 0, and θ = 0. Therefore the tube angle as a function of time
is simply

θ = ωot

Figure 8.38 shows the free body diagram of the mass at an angle θ. To
determine r(t), we formulate the equation of motion along r-direction.

[ΣFr = mar] mg sin θ = m(r̈ − rθ̇2)

Substitute the angle function into it, the differential equation of r(t) is
obtained:

r̈ − ω2
or = g sin ωot

General solution r(t) is the sum of the particular and homogeneous solution.

r(t) = rp + rh

Since the forcing function is sinusoidal function, it is known that the forced re-
sponse of such linear system will also be sinusoidal function of the same frequency.
It is obvious that a family of the particular solution has the form

rp(t) = Cg sin ωot

Substitute the solution into the differential equation, parameter C may be deter-
mined.

−Cω2
og sin ωot− Cω2

og sin ωot = g sin ωot, C = − 1

2ω2
o

Homogeneous solution is the solution of the equation when the forcing function
is null. For this problem, we look for the solution, rh(t), of

r̈ − ω2
or = 0

which has the well known form of the exponential function:

rh(t) = Aest

for specific values of s and A.
The value of s, known as the characteristic root, may be determined by sub-

stituting rh(t) back into the homogeneous equation.

As2est − Aω2
oe

st = 0, s = ±ωo

Chulalongkorn University Phongsaen PITAKWATCHARA



8.5 Curvilinear Motion 294

Figure 8.37: Example 8.18 ([3], pp. 156)

Therefore, the general homogeneous solution will be the linear combination of
the exponential functions:

rh(t) = Aeωot + Be−ωot

Consequently, the general solution r(t) will be

r(t) = rp + rh = Aeωot + Be−ωot − 1

2ω2
o

g sin ωot

where the coefficient A and B are determined from the initial conditions:

r(0) = 0 = A + B

and
ṙ(0) = 0 = Aωo −Bωo −

g

2ωo

Solving these simultaneous equations for A and B:

A =
g

4ω2
o

, B = − g

4ω2
o

Substitute back into the general solution, we may determine the radial parameter
as a function of time;

r(t) =
g

2ω2
o

(sinh θ − sin θ)
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Figure 8.38: Solution to example 8.18

Example 8.19 ([4], Prob. 3/98) The small pendulum of mass m is suspended
from a trolley that runs on a horizontal rail. The trolley and pendulum are
initially at rest with θ = 0. If the trolley is given a constant acceleration a = g,
determine the maximum angle θmax through which the pendulum swings. Also
find the tension T in the cord in terms of θ.

Solution: Because the pendulum moves in circular motion relative to the
trolley, we decide to use the moving n-t coordinate frame to describe its motion.
With the constant radius of curvature, the acceleration components are simplified
as shown in fig. 8.40.

To apply Newton’s law, the absolute acceleration is needed. From the known
acceleration of the trolley, that of the pendulum may be determined by the
relative motion equation as

[

aP = aC + aP/C

]

aP = gi + lθ̇2en + lθ̈et

Equations of motion may now be formulated. Along the t-direction (where
the unknown tension does not show up),

[ΣFt = mat] −mg sin θ = m(−g cos θ + lθ̈)

Hence the angular acceleration of the pendulum, as a function of the an-
gle, is

θ̈ =
g

l
(cos θ − sin θ)

which leads us to further solve for the angular velocity as

[

θ̇dθ̇ = θ̈dθ
]

θ̇2

2
=
∫ θ

0
g
l
(cos θ − sin θ)dθ

θ̇2 = 2g
l
(sin θ + cos θ − 1)
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Figure 8.39: Example 8.19 ([4], pp. 155)

When the angle reaches the maximum or minimum value, its angular velocity
will be zero. Applying this fact to the above equation, the necessary condition
for being at the apex is

sin θ + cos θ = 1

For the maximum value, the equation yields θmax = π
2
.

Tension T in the cord may then be determined directly from solving the
equation of motion in the normal direction:

[ΣFn = man] T −mg cos θ = m(g sin θ + lθ̇2)

Substitute the velocity expression into the equation, the tension as a func-
tion of the swinging angle is

T = mg(3 sin θ + 3 cos θ − 2)

Example 8.20 ([4], Prob. 3/100) A small object is released from rest at A
and slides with friction down the circular path. If the coefficient of friction
is 0.2, determine the velocity of the object as it passes B. (Hint: Write the
equations of motion in the n- and t- directions, eliminate N , and substitute
vdv = atrdθ. The resulting equation is a linear nonhomogeneous differential
equation of the form dy/dx+f (x) y = g (x), the solution of which is well known.)

Solution: Newton’s law may be used to solve for the object’s motion, known as
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Figure 8.40: Solution to example 8.19

the inverse dynamic problem. Free body diagram ofthe sliding mass is drawn
in fig. 8.42. Equations of motion along the normal and tangential direction are
then

[ΣFn = man] N −mg sin θ = m(3θ̇2)

[ΣFt = mat] mg cos θ − 0.2N = m(3θ̈)

Since the normal force is uninterested, we eliminate it to obtain the differntial
equation of the angle θ.

3θ̈ = g cos θ − 0.2(g sin θ + 3θ̇2)

which is a nonlinear differential equation that is rather difficult to solve. By
incorporating the kinematics relationship to the equation, we may transform the
equation into the linear one and use the well-known technique in solving it. The
velocity-acceleration relationship may be applied as follow.

[

θ̇dθ̇ = θ̈dθ
]

θ̇dθ̇ = 1
2
d
(

θ̇2
)

= 1
3

[

g cos θ − 0.2(g sin θ + 3θ̇2)
]

dθ

Rearranging the equation to match the form dy
dx

+ f(x)y = g(x), we have

d(θ̇2)

dθ
+ 0.4(θ̇2) =

2

3
g (cos θ − 0.2 sin θ)

which is a linear differential equation of θ̇2 in terms of θ. To simplify the writing,
let θ̇2 = u(θ). We will now solve for u(θ).

General solution of u(θ) is the sum of the particular and homogeneous solu-
tion:

u(θ) = up + uh
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up(θ) is the forced response of a sinusoidal function: 2
3
g(cos θ − 0.2 sin θ). Since

the system is linear, the response will also be sinusoidal function of the same
frequency. Therefore a family of the particular solution has the form

up(θ) = A cos θ + B sin θ

Substitute the solution into the differential equation, parameters A and B may
be determined.

−A sin θ + B cos θ + 0.4(A cos θ + B sin θ) =
2

3
g(cos θ − 0.2 sin θ)

A =
1.2

3.48
g, B =

(

2

3
− 0.48

3.48

)

g

Homogeneous solution is the solution of the equation when the forcing function
is null. For this problem, we look for the solution, uh(θ), of

du

dθ
+ 0.4u = 0

which has the well known form of the exponential function:

uh(θ) = Cesθ

for specific values of s and C.
The value of s, known as the characteristic root, may be determined by sub-

stituting uh(θ) back into the homogeneous equation.

Csesθ + 0.4Cesθ = 0, s = −0.4

Therefore, the general homogeneous solution becomes

uh(θ) = Ce−0.4θ

Consequently, the general solution u(θ) will be

u(θ) = up + uh =
1.2

3.48
g cos θ +

(

2

3
− 0.48

3.48

)

g sin θ + Ce−0.4θ

Because the object is released from rest, u(0) = 0. Applying this initial condition
to the above equation, the constant C is

C = − 1.2

3.48
g

Hence, square of the time rate of change of θ is

u(θ) = θ̇2 =
1.2

3.48
g cos θ +

(

2

3
− 0.48

3.48

)

g sin θ − 1.2

3.48
ge−0.4θ
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Figure 8.41: Example 8.20 ([4], pp. 156)

Figure 8.42: Solution to example 8.20

At θ = π
2
, θ̇2 = 3.382. Therefore the block velocity following the circular

path as it passes B is

[

v = rθ̇
]

vB = 3×
√

3.382 = 5.52 m/s

The account of friction force is the main source of complicated dynamics
in this problem.

Example 8.21 ([3], Prob. 3/101) A small collar of mass m is given an initial
velocity of magnitude vo on the horizontal circular track fabricated from a
slender rod. If the coefficient of kinetic friction is µk, determine the distance
traveled before the collar comes to rest. (Hint: Recognize that the friction force
depends on the net normal force.)
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Solution: Free body diagram of the collar, depicted in fig. 8.44, reveals
the forces acting on it. Note that the normal force is decomposed to Nv and Nh

according to the natural coordinate frame n-t used. The friction force then lies
along the t-axis. Setting up the equations of motion of the moving collar along
y-, n-, and t-axes:

[ΣFy = 0] Nv = mg

[ΣFn = man] Nh = mv2/r

[ΣFt = mat] −F = −µk

√

N2
v + N2

h = mat

To determine the distance traveled before the collar comes to rest, we
think of the acceleration-velocity-displacement relationship. This formulation
is convenient because it bypasses the internal time variable. With the known
tangential acceleration after recognizing the normal force expressions, we may
solve for the distance.

[vdv = atds] vdv = − µk

mr

√

r2m2g2 + m2v4ds

Integrating the differential relation during the motion of the collar and
assuming the distance traveled be s, we have

∫ 0

vo

−r

2µk

√

r2g2 + (v2)2
d(v2) =

∫ s

0

ds

s =
r

2µk
ln

(

v2
o +

√

v4
o + r2g2

rg

)

Example 8.22 ([4], Prob. 3/101) The slotted arm OB rotates in a horizontal
plane about point O of the fixed circular cam with constant angular velocity
θ̇ = 15 rad/s. The spring has a stiffness of 5 kN/m and is uncompressed when
θ = 0. The smooth roller A has a mass of 0.5 kg. Determine the normal force N
that the cam exerts on A and also the force R exerted on A by the sides of the
slot when θ = 45◦. All surfaces are smooth. Neglect the small diameter of the
roller.

Solution: Configuration of the mechanism leads us to adopt the r-θ coor-
dinate frame in describing the motion of roller A. With the reference point O
and the reference direction the horizontal line, we formulate the kinematical
constraint from the hidden triangle depicted in fig. 8.46. By the cosine law, we
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Figure 8.43: Example 8.21 ([3], pp. 156)

Figure 8.44: Solution to example 8.21
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have
0.12 + r2 + 0.2r cos θ = 0.22

Differentiate the equation to derive the velocity and acceleration constraints:

2rṙ + 0.2ṙ cos θ − 0.2rθ̇ sin θ = 0

2ṙ2 + 2rr̈ + 0.2r̈ cos θ − 0.4ṙθ̇ sin θ − 0.2rθ̈ sin θ − 0.2rθ̇2 cos θ = 0

With the given motion of the circular cam, θ = π
4
, θ̇ = 15 rad/s, and θ̈ = 0.

By the constraints, we may solve for the remaining parameters.

r = 0.1164 m, ṙ = 0.66 m/s, r̈ = 15.05 m/s2

Kinetics analysis starts from the free body diagram showing all forces acting
on the roller. The angle the normal force made with the r-axis, β, may be
determined by applying the law of sine to the hidden triangle:

0.2

sin 135
=

0.1

sin β
, β = 20.7◦

Spring force may be determined alternatively from the compressed length. If
the distance from O to the roller is r, at any instant the spring is compressed by
r − 0.1. The compressive force F then becomes

F = 5000× (r − 0.1)

With all above information, the equations of motion may be formulated to
solve for the reaction forces, N and R;

[ΣFr = mar] −F + N cos 20.7 = m(r̈ − rθ̇2)

−5000× (0.1164− 0.1) + N cos 20.7 = 0.5(15.05− 0.1164× 152), N = 81.7 N

[ΣFθ = maθ] R−N sin 20.7 = m(rθ̈ + 2ṙθ̇)

R− 81.7 sin 20.7 = 0.5(0.1164× 0 + 2× 0.66× 15), R = 38.7 N

Example 8.23 ([4], Prob. 3/102) The small cart is nudged with negligible
velocity from its horizontal position at A onto the parabolic path that lies in a
vertical plane. Neglect friction and show that the cart maintains contact with
the path for all values of k.

Solution: To show that the cart maintains contact with the path is equivalent to
show that the reaction force (normal force solely in this case) must be greater
than zero. This inspires us to use the n-t coordinate frame since the normal force
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Figure 8.45: Example 8.22 ([4], pp. 156)

Figure 8.46: Solution to example 8.22
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Figure 8.47: Example 8.23 ([4], pp. 156)

N will align with the n-axis at all time. Drawing the free body diagram of the
cart is shown in fig. 8.48 where the only forces acting upon it is the gravity and
the normal force. Formulation of its equations of motion follws straightforwardly;

[ΣFn = man] −N + mg cos θ = mv2

ρ

[ΣFt = mat] mg sin θ = mat

Radius of curvature, ρ, may be written in terms of the path parameters. The

Figure 8.48: Solution to example 8.23
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parabolic path is y = kx2. Its derivatives may be evaluated as

dy

dx
= tan θ = 2kx,

d2y

dx2
= 2k

Hence by the differential calculus,

[

ρ =
[1+y′2]

3/2

y′′

]

ρ =
(1+4k2x2)

3/2

2k

According to the n-t frame notation, t-axis is coincident with the tangent of
the path. Hence, the angle θ that it made with the horizontal reference direction
may be determined as

θ = tan−1

(

dy

dx

)

Nevertheless, cos θ may be evaluated directly if one recognize the trigonometry
identity:

[1 + tan2 θ = sec2 θ] cos θ = 1/
√

1 + 4k2x2

Because the tangential acceleration is known as a function of the path
parameter (i.e. at = g sin θ), the velocity may be determined from

[vdv = atds] vdv = g sin θds = gdy

with dy = ds sin θ (see differential triangle in fig. 8.48). Total derivative
of the above equation yields the required velocity square;

v2 = 2gy = 2kgx2

Substitute the above expressions into the n-component equation of motion,
the normal force is

N =
mg√

1 + 4k2x2
− 2mkgx2 × 2k

(1 + 4k2x2)3/2

N =
mg

(1 + 4k2x2)3/2
> 0

which justify the cart will not get off the unilateral-constraint parabolic path.
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9.1 Introduction

This chapter studies the plane kinematics of rigid bodies. As usual, we will
not consider how the motion is achieved in kinematics. This is the subject of
kinetics. However rigid bodies motion differ from the particles motion in that
the angular motion must be taken care of properly. Typical plane motion of
rigid bodies are shown in fig. 9.1. Knowledge of the rigid bodies motion are
important in designing a mechanism to perform the desired motion. Kinematics
is the prerequisite to Kinetics. Together, they will help us determine the motion
resulting from the applied force. Now some important notions will be reviewed
before the concrete analysis.

Figure 9.1: Common plane motion of rigid bodies ([3], pp. 333)

Rigid body is a system of particles for which the distance between the particles
remain unchanged. Thus there will be no change in the position vector of any
particle measured from the body-fixed coordinate system.
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Plane motion of a rigid body is a specific motion in which all parts
of the body move in parallel planes. Hence the body can be treated as a thin
slab with motion confined to the plane of motion; the plane that contains the
center of mass.

Translation is the motion in which every line in the body remains paral-
lel to its original position at all time. In other words, there is no rotation of any
line in the body. The motion of the body is completely specified by the motion
of any point in the body, since all points have the same motion.

Rectilinear translation All points in the body move in parallel straight
lines of the same distance.

Curvilinear translation All points move on parallel curves of the same
distance.

Rotation is the motion in which all particles move in circular paths about
the axis of rotation. All lines in the body which are perpendicular to the axis
of rotation rotate through the same angle in the same time. Therefore circular
motion of a point helps describe the rotating motion.

General plane motion is the combination of translation and rotation.
See case (d) of fig. 9.1. The principle of relative motion helps describe the
general motion.

There are two main approaches for the kinematics analysis. The first approach
employs the geometry of the problem at hand for direct calculation of the absolute
displacement, velocity, and acceleration. The second method, which is easier for
most of the time, use the principle of relative motion. Later sections contain
details and examples of both methods.

9.2 Rotation

Rotation of a rigid body is described by its angular motion, which is dictated
by the change in the angular position (specified by the angle θ measured from
any fixed line) of any line attached to the body. Figure 9.2 shows the rotation
motion of a rigid body. θ1 and θ2 are the angles of line 1 and 2 measured from
any fixed reference line.

Their difference is the angle β of which its value does not matter. Its conse-
quences can be written as
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Figure 9.2: Rotation motion of a rigid body ([3], pp. 333)

θ2 = θ1 + β

∆θ2 = ∆θ1

θ̇2 = θ̇1

θ̈2 = θ̈1

9.2.1 Angular Motion Relations

The above mathematics implies that all lines on a rigid body in its plane of
motion have the same angular displacement, the same angular velocity, and the
same angular acceleration. Therefore, we can pick up any line in the plane of
motion and associate it with the angular position coordinate θ. The angular
velocity ω and acceleration α of a rigid body in plane rotation are defined as

ω = θ̇ (9.1)

α = ω̇ = θ̈ (9.2)

ω dω = α dθ or θ̇ dθ̇ = θ̈ dθ (9.3)

Note the analogies between the linear and angular motion.

9.2.2 Rotation about a Fixed Axis

If a rigid body rotate in a plane about a fixed perpendicular axis, all points other
than those on the rotation axis will move in concentric circles about the fixed
axis. Hence, the curvilinear motion of a point A is related to the angular motion
of the rigid body by the familiar n-t coordinate frame kinematic relationship.
Refer to fig. 9.3 and fig. 9.4. In scalar form, motion of A can be written as

v = rω, r = constant (9.4)
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Figure 9.3: Rotation about a fixed axis viewing from top ([3], pp. 335)

Figure 9.4: Rotation about a fixed axis in perspective view ([3], pp. 335)

at = v̇ = rα (9.5)

an = rω2 =
v2

r
(9.6)

In vector form (fig. 9.4), if ω is the angular velocity of the position vector r
(constant magnitude) which is also the angular velocity of the rigid body, motion
of A can be written as

v = ṙ = ω × r (9.7)

a = v̇ = ω × (ω × r) + α× r (9.8)

an = ω × (ω × r) (9.9)

at = α× r (9.10)
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Figure 9.5: Example 9.1 ([3], pp. 342)

Example 9.1 ([3], Prob. 5/22) The two V-belt pulleys form an integral unit
and rotate about the fixed axis at O. At a certain instant, point A on the belt
of the smaller pulley has a velocity vA = 1.5 m/s, and point B on the belt of
the larger pulley has an acceleration aB = 45 m/s2 as shown. For this instant,
determine the magnitude of the acceleration aC of point C and sketch the vector
in your solution.

Solution: To determine the acceleration, the velocity must first be deter-
mined. Since point C on the pulley is moving in circular motion, the pulley
angular velocity and acceleration must be known. These can be calculated from
the motion of the belts with the assumption that there is no slippage between
the belt and the V-groove. First, find ωpulley from vA.

[v = ωr] 1.5 = ω × 0.075, ω = 20 rad/s CW

The angular acceleration of the pulley is determined from aB.

[at = rα] 45 = 0.4× α, α = 112.5 rad/s2 CCW

Now we are ready to determine the acceleration at C.

[an = rω2] aCn
= 0.36× 202 = 144 m/s2

[at = rα] aCt
= 0.36× 112.5 = 40.5 m/s2

aC =
√

a2
Cn

+ a2
Ct

= 149.6 m/s2

Example 9.2 ([3], Prob. 5/26) A V-belt speed-reduction drive is shown where
pulley A drives the two integral pulleys B which in turn drive pulley C. If
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Figure 9.6: Solution to example 9.1

A starts from rest at time t = 0 and is given a constant angular acceleration
α1, derive expressions for the angular velocity of C and the magnitude of the
acceleration of a point P on the belt, both at time t.

Solution: Since the angular acceleration of pulley A is constant and the
pulley starts from rest, the angular velocity at time t can be determined easily:

[

α = dω
dt

]

ωA = α1t

Assume the pulleys roll without slipping with the belt and the belt’s elasticity
is negligible. By these kinematic constraints, the angular velocity and acceleration
of pulley B and C are

ωB =

(

r1

r2

)

α1t, ωC =

(

r1

r2

)2

α1t

αB =

(

r1

r2

)

α1, αC =

(

r1

r2

)2

α1

Point P moves in circular path with the center of the curvature at the
center point of pulley C. Therefore its acceleration comprises of the normal and
tangential acceleration, of which the formulas are well familiar.

[an = rω2] aPn = r2

(

r1

r2

)4

(α1t)
2

[at = rα] aPt = r2

(

r1

r2

)2

α1

The magnitude of the acceleration of P is hence

aP =
√

a2
Pn

+ a2
Pt

=
r2
1

r2

α1

√

1 +

(

r1

r2

)4

α2
1t

4
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Figure 9.7: Example 9.2 ([3], pp. 343)

9.3 Absolute Motion

An approach to kinematic analysis is the absolute motion method. The process
is very straightforward. It starts with determining the geometric relations that
define the configuration involved. Then, the time derivatives of the relations are
perfomed to obtain velocities and accelerations. The sign consistency must be
kept throughout the analysis.

The crucial step, also the most difficult one, is to determine the geometric
configuration. Consequently, some problems with complicated geometries are not
suitable to analyze with this method as the constraints and the mathematics be-
come increasingly involved. Instead, the principle of relative motion, introduced
in section 9.4, is recommended.

Example 9.3 ([3], SP. 5/4) A wheel of radius r rolls on a flat surface without
slipping. Determine the angular motion of the wheel in terms of the linear
motion of its center O. Also determine the acceleration of a point on the rim of
the wheel as the point comes into contact with the surface on which the wheel
rolls.

Solution: The problem states the rolling without slipping condition of the
wheel motion. This is in fact important which helps identifying the kinematic
relationship. In the absolute motion approach, the kinematic relationship must
first be determined. For this specific problem with the given condition, it can be
concluded that the displacement of the center O must be equal to the arc length
along the rim of the wheel that rolls over the flat surface. With the depicted
figure, fig. 9.8, the distance s is equal to the arc length C

′

A. Mathematically,

s = rθ

Differentiating the above relationship, we have the velocity and the accelera-
tion relations;

vO = rω
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aO = rα

where

vO = velocity of the center O of the wheel
ω = angular velocity of the wheel

aO = acceleration of the center O of the wheel
α = angular acceleration of the wheel

The above equations are very similar to the equations related to the rotation
about the fixed axis. This is the rolling without slipping motion. Do not screw
up!

To determine the instantaneous acceleration of the contact point of the wheel
and the surface, set up a fixed coordinate system originated at the point of
contact. Observer in this frame will see point C moving along its absolute path;
the cycloidal path. From the figure, the x-y coordinates of point C at the current
location C

′

is
x = s− r sin θ = r (θ − sin θ)

y = r − r cos θ = r (1− cos θ)

Take derivatives with respect to time and apply the previous relationship,

ẋ = rθ̇ (1− cos θ) = vO (1− cos θ)

ẏ = rθ̇ sin θ = vO sin θ

ẍ = v̇O (1− cos θ) + vOθ̇ sin θ = aO (1− cos θ) + rω2 sin θ

ÿ = v̇O sin θ + vOθ̇ cos θ = aO sin θ + rω2 cos θ

When point C comes to contact, θ = 0. Substitute this value into the above
equations.

ẋ = 0 ẏ = 0

ẍ = 0 ÿ = rω2

Point C has zero velocity as expected from the constraint of rolling without
slipping. However it has the acceleration of rω2 pointing normal off the surface.
This is in fact the tangential acceleration along the cycloidal path to take it from
rest.

There are frequent situations for which the rolling without slipping motion can
be assumed. See fig. 9.9. There we can apply these basic relations immediately.

Example 9.4 ([3], SP. 5/5) The load L is being hoisted by the pulley and cable
arrangement shown. Each cable is wrapped securely around its respective pulley
so it does not slip. The two pulleys to which L is attached are fastened together
to form a single rigid body. Calculate the velocity and acceleration of the load
L and the corresponding angular velocity ω and angular acceleration α of the
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Figure 9.8: Example 9.3 ([3], pp. 345)

Figure 9.9: Applications of rolling without slipping ([3], pp. 345)
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Figure 9.10: Example 9.4 ([3], pp. 346)

Figure 9.11: Solution to example 9.4 ([3], pp. 346)

double pulley under the following conditions:

Case (a): Pulley 1: ω1 = 0, α1 = 0 (pulley at rest)

Pulley 2: ω2 = 2 rad/s, α2 = −3 rad/s2

Case (b): Pulley 1: ω1 = 1 rad/s, α1 = 4 rad/s2

Pulley 2: ω2 = 2 rad/s, α2 = −2 rad/s2

Solution:

Example 9.5 ([3], Prob. 5/35) The telephone-cable reel rolls without slipping
on the horizontal surface. If point A on the cable has a velocity vA = 0.8m/s to
the right, compute the velocity of the center O and the angular velocity ω of the
reel. (Be careful not to make the mistake of assuming that the reel rolls to the
left.)

Solution: From the previous analysis, rolling without slipping implies the
velocity at the contact point is zero. Also there is no slippage of the cable at
the inner hub, which implies the velocity of the contact rim is the same as
the velocity of the wrapped cable. Observe the motion of any line on the reel,
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Figure 9.12: Example 9.5 ([3], pp. 350)

Figure 9.13: Solution to example 9.5

here line OC, to determine the angular motion. From the proportional velocity
profile on the disc, fig. 9.13,

vO

0.9
=

0.8

0.6
, vO = 1.2 m/s →

[vO = ωr] ω = 1.2
0.9

= 1.333 rad/s CW

Example 9.6 ([4], Prob. 5/37) The cable from the drum A turns the double
wheel B, which rolls on its hubs without slipping. Determine the angular velocity
ω and angular acceleration α of drum C for the instant when the angular velocity
and angular acceleration of A are 4rad/s and 3rad/s2, respectively, both in the
CCW direction.

Solution: Drum A imparts its motion to the double wheel B through the
wrapped cable. In the same manner, drum C rolls CCW by the CW rotation of
the outer wheel B through the wrapped cable. Assume there is no slip of the
wrapped cable, which makes its motion the same as the tangential component of
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Figure 9.14: Example 9.6 ([4], pp. 340)

the departed point on the drum. Therefore the motion of the upper cable is

[v = rω] vA = 0.2× 4 = 0.8 m/s →

[at = rα] (aA)t = 0.2× 3 = 0.6 m/s2 →

Wheel B rolls with the induced motion of the connected cable:

[ω = v/r] ωB = 0.8/0.6 = 4/3 rad/s CW

[α = at/r] αB = 0.6/0.6 = 1 rad/s2 CW

The lower cable has the same motion as the tangential component of the
departed point from wheel B as

[v = rω] vC = 4/3× 0.2 = 0.267 m/s ←

[at = rα] (aC)t = 1× 0.2 = 0.2 m/s2 ←

Figure 9.15 displays the velocity profile distribution of the double wheel B.
Finally, drum C rolls by the motion of the tensioning lower cable:

[ω = v/r] ωC = 0.267/0.2 = 4/3 rad/s CCW

[α = at/r] αC = 0.2/0.2 = 1 rad/s2 CCW

Example 9.7 ([4], Prob. 5/45) The rod OB slides through the collar pivoted to
the rotating link at A. If CA has an angular velocity ω = 3rad/s for an interval
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Figure 9.15: Solution to example 9.6

of motion, calculate the angular velocity of OB when θ = 45◦.

Solution: The constraint geometry of this problem is rather obvious that
OAC must form a triangle. One can then use the law of sine and cosine
relationship and their derivatives to determine the missing motion. However, the
other relationships for this particular mechanism is that the vertical projection
of the link CA and OA must add up to the fixed length of 400 mm. Also the
horizontal projection of both links must be equal for the links to join at A.
Mathematically,

CA cos θ + y cos β = 0.4

y sin β − CA sin θ = 0

With the given parameters θ = 45◦ and CA = 0.2 m, we can solve for y
and β from the above equations:

y = 0.2947 m and β = 28.675◦

Differentiate the geometric relations with respect to time, we have

−CAθ̇ sin θ + ẏ cos β − yβ̇ sin β = 0

ẏ sin β + yβ̇ cos β − CAθ̇ cos θ = 0

Given θ̇ = −3 rad/s, we can solve for the angular velocity of OB, β̇, from
the above equations:

ẏ = −0.576 m/s and β̇ = −0.572 rad/s

Example 9.8 ([3], Prob. 5/54) Show that the expressions v = rω and at = rα
hold for the motion of the center O of the wheel which rolls on the concave
or convex circular arc, where ω and α are the absolute angular velocity and
acceleration, respectively, of the wheel. (Hint : Follow the sample problem and
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Figure 9.16: Example 9.7 ([4], pp. 342)

allow the wheel to roll a small distance. Be very careful to identify the correct
absolute angle through wihch the wheel turns in each case in determining its
angular velocity and angular acceleration.)

Solution: Let θ be the angular motion of the wheel while β be the angu-
lar motion of the line connecting the wheel center and the center of the curvature
arc as shown in fig. 9.18. Consider each case separately.

Concave arc:
The rolling distance can be calculated from either the wheel or the constraining
arc, which must be equal. This is the underlying geometrical relationship.

rolling distance = Rβ = r (θ + β)

From the figure, the traveling distance of the center O is

s = (R− r)β

Referring to the geometrical relationship, the traveling distance can be written
as the function of the wheel motion as

s = (R− r)β = rθ

Differentiate with respect to time to get the velocity and the tangential ac-
celeration of O:

v = ṡ = (R− r) β̇ = rθ̇ = rω

at = v̇ = (R− r) β̈ = rω̇ = rα
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Figure 9.17: Example 9.8 ([3], pp. 354)

Convex arc:
The rolling distance can be calculated from either the wheel or the constraining
arc, which must be equal. This is the underlying geometrical relationship.

rolling distance = Rβ = r (θ − β)

From the figure, the traveling distance of the center O is

s = (R + r)β

Referring to the geometrical relationship, the traveling distance can be written
as the function of the wheel motion as

s = (R + r)β = rθ

Differentiate with respect to time to get the velocity and the tangential ac-
celeration of O:

v = ṡ = (R + r) β̇ = rθ̇ = rω

at = v̇ = (R + r) β̈ = rω̇ = rα

Therefore, it can be conclude that the velocity and the tangential acceleration
of the center of the wheel, O,

v = rω

at = rα

hold independent of the curvature, R, of the terrain!
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Figure 9.18: Solution to example 9.8

Example 9.9 ([3], Prob. 5/56) The Geneva wheel is a mechanism for producing
intermittent rotation. Pin P in the integral unit of wheel A and locking plate
B engages the radial slots in wheel C thus turning wheel C one-fourth of a
revolution for each revolution of the pin. At the engagement postion shown,
θ = 45◦. For a constant CW angular velocity ω1 = 2rad/s of wheel A, determine
the corresponding CCW angular velocity ω2 of the wheel C for θ = 20◦. (Note
that the motion during engagement is governed by the geometry of triangle
O1O2P with changing θ.)

Solution: The governing geometry of this mechanism is the triangle O1O2P .
According to fig. 9.19, β̇ is the angular velocity of wheel C. Therefore the appro-
priate relation must contain the parameter β so differentiating the equation will
give the desired angular velocity of the wheel C. The kinematical relationship is

tan β =
O1P sin θ

O1O2 −O1P cos θ
=

1√
2
sin θ

1− 1√
2
cos θ

Differentiating the equation gives,

β̇ sec2 β =

(

1− 1√
2
cos θ

)

× 1√
2
θ̇ cos θ − 1√

2
sin θ ×

(

1√
2
θ̇ sin θ

)

(

1− 1√
2
cos θ

)2

Substituting the given motion of wheel A,

θ = 20◦, θ̇ = −2 rad/s, θ̈ = 0

in the above equations and solving for the unknowns result in

β = 35.783◦, β̇ = −1.923 rad/s

Hence the angular velocity of the wheel C is 1.923 rad/s CCW.
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Figure 9.19: Example 9.9 ([3], pp. 355)

Example 9.10 ([4], Prob. 5/54) The rod AB slides through the pivoted collar
as end A moves along the slot. If A starts from rest at x = 0 and moves to the
right with a constant acceleration of 0.1 m/s2, calculate the angular acceleration
α of AB at the instant when x = 150mm.

Solution: The angular acceleration of AB is θ̈. Therefore the underlying
geometry must contain the angle θ so differentiation will lead to the desired
angular acceleration. An obvious one is the right triangle. The relationship is

x = 0.2 tan θ

Differentiating twice gives

ẋ = 0.2θ̇ sec2 θ

ẍ = 0.2θ̈ sec2 θ + 0.2θ̇ ×
(

2θ̇ sec2 θ tan θ
)

A starts from rest at x = 0 and moves to the right with a constant acceleration
of 0.1 m/s2. This implies

x(0) = 0, ẋ(0) = 0, ẍ = 0.1 m/s2 constant

Integrating to determine the velocity and motion relation;

ẋ = 0.1t, x = 0.05t2

At x = 0.15 m, t =
√

3 sec. At that instant, ẋ = 0.1
√

3 m/s and ẍ =
0.1 m/s2. At that posture, tan θ = 3/4 and sec θ = 5/4. Substituting these
parameters into the above equations, the angular motion of AB are

θ̇ = 0.554 rad/s, θ̈ = −0.1408 rad/s2
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Figure 9.20: Example 9.10 ([4], pp. 345)

Example 9.11 ([3], Prob. 5/57) The punch is operated by a simple harmonic
oscillation of the pivoted sector given by θ = θ0 sin 2πt where the amplitude is
θ0 = π

12
rad (15◦) and the time for one complete oscillation is 1 second. Determine

the acceleration of the punch when (a) θ = 0 and (b) θ = π
12

.

Solution: The constrained geometry inside this mechanism is the triangle
above the punch. Apply the law of cosine to relate the angular to the
translational displacement as follow;

0.12 = y2 + 0.142 − 0.28y cos θ

Differentiate twice to get the acceleration relationship.

0 = 2yẏ − 0.28ẏ cos θ + 0.28yθ̇ sin θ

0 = 2ẏ2+2yÿ−0.28ÿ cos θ+0.28ẏθ̇ sin θ+0.28ẏθ̇ sin θ+0.28yθ̈ sin θ+0.28yθ̇2 cos θ

Motion of the pivoted sector is a simple harmonic oscillation described by

θ = θo sin 2πt

Differentiate twice to get the angular acceleration, θ̈;

θ̇ = 2πθo cos 2πt

θ̈ = − (2π)2 θo sin 2πt

When θ = 0, t = 0 s. Consequently,

θ̇ = 2πθo, θ̈ = 0
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Figure 9.21: Example 9.11 ([3], pp. 355)

Substitute these parameters into the triangular relation, motion of the punch is

y = 0.24, 0.04 m

ẏ = 0 m/s

ÿ = −0.909 m/s2

When θ = π
12

, t = 1
4

s. Consequently,

θ̇ = 0, θ̈ = − (2π)2 θo

Substitute these parameters into the triangular relation, motion of the punch is

y = 0.2284, 0.042 m

ẏ = 0 m/s

ÿ = 0.918 m/s2

Example 9.12 ([3], Prob. 5/58) One of the most common mechanisms is the
slider-crank. Express the angular velocity ωAB and angular acceleration αAB of
the connecting rod AB in terms of the crank angle θ for a given constant crank
speed ω0. Take ωAB and αAB to be positive counterclockwise.

Solution: The underlying geometry is inside the triangle ABO. It is clear
that the height of B calculating from either AB or OB must be equal. Therefore

l sin β = r sin θ

Differentiate with respect to time to get the velocity relationship:

lβ̇ cos β = rθ̇ cos θ
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Figure 9.22: Example 9.12 ([3], pp. 355)

and substitute θ̇ = ω0 so that

ωAB = β̇ =
rω0 cos θ

l cos β
=

rω0

l

cos θ
√

1− r2

l2
sin2 θ

Differentiate again to get the acceleration relationship:

lβ̈ cos β − lβ̇2 sin β = rθ̈ cos θ − rθ̇2 sin θ

and substitute β, β̇, θ̇, and θ̈ = 0 so that

αAB = β̈ =
lβ̇2 sin β − rθ̇2 sin θ

l cos β
=

rω2
0

l
sin θ

r2

l2
− 1

(

1− r2

l2
sin2 θ

)3/2

9.4 Relative Velocity

Another method to analyze the kinematics problems is the principle of
relative motion. It is usually suitable for the complex motion as it is more
scalable and more systematic. Consider first the velocity of points in a rigid body.

Velocity propagation in the rigid body
Referring to chapter 7, the relative velocity equation using the non-rotating
reference frame is

vA = vB + vA/B (9.11)

Let the two points A and B be on the same rigid body. The implication of this
choice is that the motion of one point as seen by an observer translating with the
other point must be circular since the radial distance to the observed point from
the reference point does not change.
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Figure 9.23: General motion of the rigid body: translation and rotation ([3], pp.
356)

Figure 9.24: General motion of the rigid body: translational and rotational ve-
locity ([3], pp. 357)
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Figure 9.25: Velocity propagation among rigid bodies ([3], pp. 366)

Motion of the rigid body can be divided into two parts: translation and
rotation. In fig. 9.23, after the translation of the rigid body expressed by the
motion of point B, the body appears to undergo fixed axis rotation about B with
A executing circular motion as shown in fig. 9.23 (b). Hence the relationship for
circular motion describes the relative portion of A’s motion.

With B as the reference point, the total displacement of A is

∆rA = ∆rB + ∆rA/B (9.12)

∆rA/B = −∆rB/A has the magnitude r∆θ as ∆θ → 0.
Divide the displacement quantities above by the elapsed time ∆t and consider

the limit as ∆t→ 0, the familiar relative velocity equation, eq. 9.11 results.
If the distance r between A and B is constant, vA/B is the velocity of the

circular motion. That is
vA/B = ω × rA/B (9.13)

or in scalar form
vA/B = rA/B ω, vA/B ⊥ AB (9.14)

where ω is the absolute angular velocity of the rigid body. Fig. 9.24 is the analog
of fig. 9.23 in the velocity form.

We usually are not interested in just only the motion of points on the same
rigid body. Many useful mechanisms are constructed from rigid bodies connected
together in a specified manner. Therefore we also would like to determine the
motion of points on other bodies from the motion of known points and further
information.

Velocity propagation among rigid bodies
Recall the relative velocity equation expressed in the non-rotating reference
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frame shown in eq. 9.11. This time, point A and B are coincident points on
different rigid bodies for the instant. See fig. 9.25. Two points are at the position
of the pin in the slot. In this case, the distance between two points are not
constrained to be fixed even it happens to be zero at the moment. Therefore the
relative term vA/B can no more be determined by ω × rA/B.

Methods in solving the relative velocity equation
There are several methods in solving eq. 9.11. Here the following three
approaches are presented.

1. Vector algebra approach

2. Graphical analysis approach

3. Vector/Graphic approach

Vector algebra approach For this approach, we write each vetor in terms of i-
and j- components. Since the problem of interest is planar, there will be two
scalar equations for each vector equation. This implies at most two unknowns
can be solved per equation.

Graphical analysis approach Known vector quantities are drawn head to
tail using a convenient scale. Unknown vectors, which complete the polygon, will
be drawn last. Their magnitudes and directions will be measured directly from
the drawing. This method is appropriate when expressing the vector quantities
algebraically results in an awkward mathematical expressions.

Vector/Graphic approach Here, both the vector algebra and graphical techniques
are used altogether to determine the solutions in the most convenient way. Sketch
of the vector polygon representing the vector equation is helpful. With the
sketch, we may see the convenient directions along which the projection of the
vectors yields the simple scalar component equation. Ultimately, simultaneous
equations may be avoided by a careful choice of the projecting directions.

Example 9.13 ([3], SP. 5/7) The wheel of radius r = 300 mm rolls to the right
without slipping and has a velocity v0 = 3 m/s of its center O. Calculate the
velocity of point A on the wheel for the instant represented.

Solution: Velocity of A can be computed from O had the angular velocity
of the wheel been known. Since the wheel rolls to the right without slipping, the
velocity at C is zero. This can be used to determine the angular velocity.

[ω = vO/r] ω = 3/0.3 = 10 rad/s CW
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Figure 9.26: Example 9.13 ([3], pp. 359)

Figure 9.27: Solution to example 9.13

Another way to compute vA is to compute from vC which is O. That is

[

vA = vC + ω × rA/C

]

vA = 0 + 10k× (−0.2 cos 30i + (0.3 + 0.2 sin 30) j)

vA = 4.36 m/s 6 23.4◦

Example 9.14 ([3], SP. 5/10) The power screw turns at a speed that gives the
threaded collar C a velocity of 0.25 m/s vertically down. Determine the angular
velocity of the slotted arm when θ = 30◦.

Solution: Imagine there are two points: point A on the slotted arm and
point B on the collar. A and B coincide at θ = 30◦. Because of the sliding
contact constraint from the slot, vA/B has the direction along the slot (away
from O). Also vA is always perpendicular to the link AO. See fig. 9.29.

[

vA = vB + vA/B

]

vA = 0.25 cos 30 = 0.217 m/s

[ω = v/r] ω = vA/OA = 0.417 rad/s CCW
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Figure 9.28: Example 9.14 ([3], pp. 362)

Figure 9.29: Solution to example 9.14
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Figure 9.30: Example 9.15 ([3], pp. 367)

Example 9.15 ([3], Prob. 5/78) The rotation of the gear is controlled by the
horizontal motion of end A of the rack AB. If the piston rod has a constant
velocity 300 mm/s during a short interval of motion, determine the angular ve-
locity of the gear and the angular velocity of AB at the instant when x = 800 mm.

Solution: Velocity at A propagates over the same body to C, which is the
point on the rack AB at where it makes a contact with the pitch of the gear.
Here point C is constrained to have the same velocity as the coincident point on
the gear (but not the acceleration). Or the gear teeth will be broken. Velocity
then passes from one body to the attached body. In particular, the gear rotates.

Since the velocity of a point on the rotating gear is always perpendicular to
the radial line, it implies that

vC ⊥ OC

From the geometry of the triangle OCA (fig. 9.31),

θ = sin−1 (0.2/0.8) = 14.48◦

Setting up the velocity equation and draw the relevant velocity polygon
(fig. 9.31), we have

[

vC = vA + vC/A

]

vC = 0.3 cos θ = ωO × 0.2, ωO = 1.45 rad/s CW

vC/A = 0.3 sin θ = ωAB ×
√

0.82 − 0.22, ωAB = 0.0968 rad/s CCW

Example 9.16 ([3], Prob. 5/83) The flywheel turns CW with a constant speed
of 600 rev/min, and the connecting rod AB slides through the pivoted collar
at C. For the position of θ = 45◦, determine the angular velocity of AB using
the relative velocity relations. Choose a point D on AB coincident with C as a
reference point whose direction of velocity is known.
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Figure 9.31: Solution to example 9.15

Figure 9.32: Example 9.16 ([3], pp. 368)

Solution: Choose D to be the point on the linkage AB which coincides
with the pivot point C on the collar. Using the relative velocity equation,

[

vD = vC + vD/C

]

vD = vD/C along the slot and pointing out of A

vA can be determined from either the motion of the flywheel or the motion
of link AB. From this relationship and the velocity polygon in fig. 9.33, ωAB can
be found.

[

vA = vD + vA/D

]

vA = rω = 0.2× (600× 2π/60) = 12.566 m/s

vA/D = vA sin 59.63 = 10.84 = ωAB × 0.56

ωAB = 19.36 rad/s CW

Example 9.17 ([4], Prob. 5/85) The Geneva mechanism is shown again here.
By relative motion principle, determine the angular velocity of wheel C for
θ = 20◦. Wheel A has a constant CW angular velocity ω1 = 2 rad/s.

Solution: Let P be the point on the wheel A at the knob, while Q be the
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Figure 9.33: Solution to example 9.16

Figure 9.34: Example 9.17 ([4], pp. 360)

point on the wheel C that is coincident with P when θ = 20◦. Their relative
velocity is constrained to be along the slot on the wheel C. Therefore

[

vP = vQ + vP/Q

]

vP = ω × r = 2×
(

0.2/
√

2
)

= 0.283 m/s

vQ = vP sin 34.355 = ω2 × 0.083, ω2 = 1.924 rad/s CCW

Example 9.18 ([3], Prob. 5/91) At the instant represented, a = 150 mm and
b = 125 mm, and the distance a+ b between A and C is decreasing at the rate of
0.2 m/s. Determine the common velocity v of points B and D for this instant.

Solution: Because B and D are on the same rigid body translating along
the slot, vB = vD. The velocity relationship is obvious:

[

vB = vA + vB/A

] [

vD = vC + vD/C

]

From the statement, block A and C become closer which means ȧ+ ċ = −0.2.
And from the imposing mechanism, A moves to the right and B to the left.
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Figure 9.35: Solution to example 9.17

Figure 9.36: Example 9.18 ([3], pp. 370)

Therefore
vA − vC = 0.2i m/s

Referring to the velocity diagram in fig. 9.37,

vB

tan 22.62
+

vB

tan 36.87
= 0.2, vB = 0.0536j m/s

Example 9.19 ([3], Prob. 5/92) The wheel rolls without slipping. For the in-
stant portrayed, when O is directly under point C, link OA has a velocity v = 1.5
m/s to the right and θ = 30◦. Determine the angular velocity ω of the slotted link.

Solution: Since the wheels rolls without slipping,

[vO = ωr] 1.5 = ωO × 0.1, ωO = 15 rad/s CW

vP = ωO × (2× 0.1 cos 15) = 2.9 m/s
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Figure 9.37: Solution to example 9.18

Figure 9.38: Example and solution of 9.19 ([3], pp. 370)

Let P be the point at the pin on the disk and Q be the coincident point on
the slotted arm. According to the figure, their relative velocity directs along the
slot:

[

vP = vQ + vP/Q

]

vQ = vP cos (15 + 23.78) = 2.26 m/s

[ω = v/r] ωC = 2.26/0.124 = 18.23 rad/s CCW

Example 9.20 ([4], Prob. 5/88) Ends A and C of the connected links are
controlled by the vertical motion of the piston rods of the hydraulic cylinders.
For a short interval of motion, A has an upward velocity of 3 m/s, and C has a
downward velocity of 2 m/s. Determine the velocity of B for the instant when
y = 150 mm.

Solution: vB can be calculated from either vC or vA according to

vB = vC + vB/C = vA + vB/A

The related velocity diagram is shown in fig. 9.40, from which, by the law of
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Figure 9.39: Example 9.20 ([4], pp. 361)

Figure 9.40: Solution to example 9.20

sine, the following relation can be written:

5

sin 60
=

vB/C

sin 96.87
=

vB/A

sin 23.13

Therefore,
vB/C = 5.732 m/s and vB/A = 2.268 m/s

Using the Pythagorus’s theorem, we have

(

vB/C sin 23.13
)2

+
(

3 + vB/A cos 83.13
)2

= v2
B

vB = 3.97 m/s directed along the dotted arrow
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Figure 9.41: Determination of the ICZV point ([3], pp. 371)

9.5 Instantaneous Center of Zero Velocity

Principle of relative motion determines the velocity of a point on a rigid body by
adding the relative velocity, due to the rotation about a reference point, to the
velocity of the reference point. If the reference point has zero velocity momen-
tarily, the body may be considered to be in pure rotation about an axis, normal to
the plane of motion, passing through this point. This point is called the instan-
taneous center of zero velocity or ICZV in short. It greatly helps in visualizing
and analyzing velocity in the plane motion. Note that ICZV has zero velocity
but the acceleration may not be zero.

Figure 9.41 illustrates the determination of the ICZV point. In (a), point
A and B, instantaneously, have the absolute circular motion about point C.
Therefore point C is the ICZV. However, it may not be on the body physically.
We still can visualize it as the point lying on the extended body. It is important
to denote that ICZV is not a fixed point in the body nor a fixed point in the
plane. After locating the ICZV, the body angular velocity is calculated as

ω =
vA

rA
=

vB

rB
(9.15)

Or the velocity relationship between any two points is

vB =

(

rB

rA

)

vA (9.16)

In case the body motion is just the translation motion, the ICZV is located
at infinity along the perpendicular line to the velocity.

Example 9.21 ([4], Prob. 5/115) Vertical oscillation of the spring-loaded
plunger F is controlled by a periodic change in pressure in the vertical hydraulic

Chulalongkorn University Phongsaen PITAKWATCHARA

./figs/ICZV_showing.eps


9.5 Instantaneous Center of Zero Velocity 339

Figure 9.42: Example and solution of 9.21 ([4], pp. 368)

cylinder E. For the position θ = 60◦, determine the angular velocity of AD
and the velocity of the roller A in its horizontal guide if the plunger F has a
downward velocity of 2 m/s.

Solution: In this configuration, vB is forced to move downward by the hy-
draulic while vA is forced to move horizontally by the guide. Therefore the
ICZV of the linkage ABD is at point C. Its consequence is the direction of vD

is known to be perpendicular to CD.
Because the plunger moves downward with the rate of 2 m/s, the vertical

component of vD is 2 m/s downward. Therefore

vD =
2

cos 30
= ωAD × (2× 0.1 cos 30)

ωAD = 13.33 rad/s CW

Using the ICZV,

vA = ωAD × (0.2 sin 60) = 2.309 m/s, to the right

Example 9.22 ([3], Prob. 5/121) Determine the angular velocity ω of the ram
head AE of the rock crusher in the position for which θ = 60◦. The crank OB
has an angular speed of 60 rev/min. When B is at the bottom of its circle, D
and E are on a horizontal line through F , and lines BD and AE are vertical.
The dimensions are OB = 100 mm, BD = 750 mm, and AE = ED = DF = 375
mm. Carefully construct the configuration graphically, and use the method of
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ICZV.

Solution: Graphical method using ICZV is the best way for this problem,
which is capture in fig. 9.43. Here we explain another approach using the
vector/graphic method. From the initial and current posture, write the distance
between point O and F :

100 sin 60− 750 cosα + 375 cosβ = 375

−100 cos 60 + 750 sinα + 375 sinβ = 850

By the help of complex exponent, α = 85.85◦, β = 23.9◦.
Now, write the distance between point O and A:

375 cos θ + 375 cos ζ + 750 cosα− 100 sin 60 = 375

−375 sin θ + 375 sin ζ + 750 sinα− 100 cos 60 = 475

By the help of complex exponent, θ = 81.04◦, ζ = 21.49◦.
Next, find the distance from the ICZV to point of interest. See fig. 9.43 and

fig. 9.44.

l1 sin 30 = −100 cos 60 + 750 sinα− l2 sin β

l1 cos 30 = l2 cos β + 750 cosα− 100 sin 60

l1 = 773.63 mm, l2 = 768.2 mm

l3 cos β = l4 cos θ + 375 cos ζ

l4 sin β = l4 sin θ − 375 sin ζ

l3 = 435.8 mm, l4 = 317.8 mm

After locating the ICZV, the velocity of any point can be determined readily.

vB = 60× 100 = (l1 + 100)× ωBD, ωBD = 6.868 rev/min CW

vD = ωBD × l2 = 5276 mm · rev/min = l3 × ωDE, ωDE = 12.1 rev/min CW

vE = ωDE × l4 = ωAE × 375, ωAE = 10.26 rev/min = 1.07 rad/s CW

Example 9.23 ([3], Prob. 5/122) The shaft at O drives the arm OA at a
clockwise speed of 90 rev/min about the fixed bearing at O. Use the method of
ICZV to determine the rotational speed of gear B (gear teeth not shown) if
(a) ring gear D is fixed and
(b) ring gear D rotates CCW about O with a speed of 80 rev/min.

Solution: It is easily observed that the motion of gear A is influenced
by
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Figure 9.43: Example 9.22 ([3], pp. 380)

Figure 9.44: Solution to example 9.22
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Figure 9.45: Example 9.23 ([3], pp. 380)

1. motion of link OA at point A: vAgear
= vAlink

2. motion of the leftmost point on the rim: vCgearA
= vCgearB

3. motion of the rightmost point on the rim: vDgearA
= vDgearD

When the ring gear D is fixed (see fig. 9.46),

vA = 90 a ↓

vC = 2vA = 2× 90 a = ωB ×
a

2
, ωB = 360 rev/min CW

When the ring gear D rotates at 80 rev/min CCW (see fig. 9.46),

vA = 90 a ↓, vD = 80×
(

3a

2

)

= 120 a ↑

vC =
10/7

3/7
(90 a) = ωB ×

a

2
, ωB = 600 rev/min CW

Example 9.24 ([4], Prob. 5/118) The large roller bearing rolls to the left on
its outer race with a velocity of its center O of 0.9 m/s. At the same time, the
central shaft and inner race rotate CCW with an angular speed of 240 rev/min.
Determine the angular velocity of each of the rollers.

Solution: The vertical velocity profile is imposed on fig. 9.47. From the
problem, it is specified that vO = 0.9 m/s and ωi = 240 rev/min = 8π rad/s
CCW.
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Figure 9.46: Solution to example 9.23

From the velocity profile, the ICZV of the inner race is 0.9
8π

m lower to point
O. Therefore, velocity of the point on the roller contacting with the inner race is

v = 8π ×
(

0.05− 0.9

8π

)

= 0.3566 m/s→

If we imagine the bearing as one rigid disk rolling with the same angular
velocity. That value is

ωO =
0.9

0.125
= 7.2 rad/s CCW

which is also the angular velocity of the outer ring. Hence, velocity of the point
on the roller contacting with the outer race is

v = 7.2× 0.025 = 0.18 m/s←

Consider the velocity profile across the roller. Using the similar triangle rela-
tionship,

0.18

0.3566
=

x

0.05− x
, x = 16.77 mm

Therefore, its angular velocity is

ωroller =
0.18

x
= 10.732 rad/s CW

9.6 Relative Acceleration

The relative acceleration relationship with non-rotating reference axes can be
obtained from differentiating the relative velocity relation with respect to time,
i.e.

aA = aB + aA/B (9.17)
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Figure 9.47: Example and solution of 9.24 ([4], pp. 369)

Figure 9.48: Relative acceleration between point A and B ([3], pp. 381)
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Figure 9.49: Acceleration diagram ([3], pp. 381)

where aA/B is the acceleration that A appears to have to a non-rotating observer
moving with B.

If A and B are two points on the same rigid body in plane motion, the distance
between them remains constant so that the observer moving with B perceives A
to have circular motion about B. As a result, the relative acceleration term can
be partitioned into the normal and the tangential components. Normal compo-
nent acceleration, which is directed from A toward B, is due to the change of
direction of vA/B. Tangential component acceleration, which is perpendicular to
AB, is due to the change in magnitude of vA/B. See fig. 9.48 and fig. 9.49 for
the illustration. Similar derivation for the velocity equation can be applied to
determine the acceleration equation, for which the result would be

aA = aB +
(

aA/B

)

n
+
(

aA/B

)

t
(9.18)

where

(

aA/B

)

n
= ω × (ω × r) ,

(

aA/B

)

n
= rω2 = v2

A/B/r (9.19)
(

aA/B

)

t
= α× r,

(

aA/B

)

t
= rα = v̇A/B (9.20)

Methods in solving the relative acceleration equation
There are at least three ways in solving the relative acceleration equation. Each
of which has its pros and cons as briefly described below.

1. Vector algebra approach

2. Graphical analysis approach

3. Vector/Graphic approach
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Vector algebra approach Each term in the equation is represented in the selected
coordinate system, which may be x − y, n − t, or r − θ coordinates. For
two dimensional problems, each vector equation has two independent scalar
equations. Therefore at most two unknowns can be solved per equation. This
method is appropriate for writing the computer codes to solve the problems or
when the exact analytical expression is needed.

Graphical analysis approach Known vectors are constructed using a conve-
nient scale. They are connected head to tail according to the vector equation.
Finally, unknown vectors which complete the polygon are then measured directly
from the drawing. This approach is suitable when the vector terms result in an
awkward mathematical expression.

Vector/Graphic approach This approach combines the good points of the
vector and the graphical methods together. The scalar component equations
may be written by projecting the vectors along the convenient directions. After
that a set of the equations may be solved simultaneously. However, this may be
avoided by a careful choice of the projecting direction.

It is recommended for every approach of solving two dimensional problems to
sketch the vector polygon representing the vector equation. Known and unknown
quantities with the constraints can be visualized explicitly. One final note before
ending this section. Because an depends on the velocity, usually it is required to
solve for the velocity before the acceleration calculation can be made.

Example 9.25 ([4], Prob. 5/138) If the wheel in each case rolls on the circular
surface without slipping, determine the acceleration of the point C on the wheel
momentarily in contact with the circular surface. The wheel has an angular
velocity ω and an angular acceleration α.

Solution: Because the wheel rolls without slipping, vC = 0. For both
cases, point O moves along the circular path. Furthermore, the rotational
motion of the wheel, ω and α, is given. Therefore,

vO = rωi, (aO)t = rαi

Applying these expressions to the acceleration equation for each case, we have

(a)
[

aC = aO + aC/O

]

aC = (aO)t + (aO)n +
(

aC/O

)

t
+
(

aC/O

)

n

= rαi +
r2ω2

R− r
j− rαi + rω2j = rω2

(

R

R− r

)

j
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Figure 9.50: Example and solution of 9.25 ([4], pp. 379)

|aC | = rω2

(

R

R− r

)

> rω2

(b)
[

aC = aO + aC/O

]

aC = (aO)t + (aO)n +
(

aC/O

)

t
+
(

aC/O

)

n

= rαi− r2ω2

R + r
j− rαi + rω2j = rω2

(

R

R + r

)

j

|aC | = rω2

(

R

R + r

)

< rω2

Example 9.26 ([4], Prob. 5/144) The simplified clam-shell bucket is shown.
With the block at O considered fixed and with the constant velocity of the
control cable at C equal to 0.5 m/s, determine the angular acceleration α of the
right-hand bucket jaw when θ = 45◦ as the bucket jaws are closing.

Solution: The rotational motion of the bucket jaw is to be determined
from the relative motion between two points B and C on the jaw.

Velocity analysis Here it may be simpler to apply the ICZV method. First,
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locate the ICZV of the right jaw. Since the velocity direction of B and C are
known, ICZV is the intersection of the radial lines as shown in fig. 9.52. Let that
ICZV point be called point D. Then, for the given configuration θ = 45◦,

CD = CO tan 50.345 = 692.78 mm

On the bucket,

[ω = v/r] ωBC = 0.5/CD = 0.7212 rad/s CW closing

[v = ωr] vB = ωBC ×
(

CO/ cos 50.345− BO
)

= 0.2165 m/s

On the linkage BO,

[ω = v/r] ωBO = vB/BO = 0.361 rad/s CCW

Acceleration analysis The relative acceleration between point B and C are
constrained by the bucket to be the circular motion. Since point C moves
upward with constant velocity, aC = 0. Making use of the n-t description, we
have

[

aB = aC + aB/C

]

(aB)n + (aB)t =
(

aB/C

)

n
+
(

aB/C

)

t

where

(

aB/C

)

n
= BCω2

BC = 0.2604 m/s2 (aB)n = BOω2
BO = 0.0782 m/s2

Substitute these values in the above relationship. From the acceleration dia-
gram in fig. 9.52 along the horizontal direction, we have

0.2604 cos 22.5 +
(

aB/C

)

t
sin 22.5− (aB)t cos 50.345− 0.0782 sin 50.345 = 0

Along the vertical direction, we have

0.2604 sin 22.5−
(

aB/C

)

t
cos 22.5− (aB)t sin 50.345 + 0.0782 cos 50.345 = 0

Hence

(

aB/C

)

t
= −0.049 m/s2 (wrong direction) (aB)t = 0.2532 m/s2

Therefore

[α = at/r] αBC = 0.049/0.5 = 0.098 rad/s2 CW
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Figure 9.51: Example 9.26 ([4], pp. 381)

Figure 9.52: Solution to example 9.26
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Example 9.27 ([3], Prob. 5/152) The mechanism where the flexible band F
attached to the sector at E is given a constant velocity of 4 m/s as shown. For
the instant when BD is perpendicular to OA, determine the angular acceleration
of BD.

Solution: Motion of the flexible band causes the rotation of the sector,
which then causes the motion of the link AD and BD, respectively. The sector
rotates about O by the pulling force of the band. Consequently, point E on the
sector moves in circular path about O with the velocity of 4 m/s; the velocity of
the band. Hence, at this instant,

[ω = v/r] ωOA = 4/0.2 = 20 rad/s CCW

[v = ωr] vA = ωOA × 0.125 = 2.5 m/s ↑

Velocity analysis If we know the motion of A, the motion of D can be de-
termined from the relative velocity and the useful velocity diagram shown in
fig. 9.54 as

[

vD = vA + vD/A

]

vD/vA = 3/4, vD = 1.875 m/s

and
vD/A/vA = 5/4, vD/A = 3.125 m/s

Hence,

[ω = v/r]
ωBD = vD/0.25 = 7.5 rad/s CCW

ωAD = vD/A/0.25 = 12.5 rad/s CCW

Acceleration analysis Since the flexible band pulls the sector with a con-
stant velocity, (aE)t = 0. Therefore the angular acceleration of the sector is zero.
This implies the total acceleration of A, aA, is in the normal direction pointing
towards O. Consequently, aD can be determined as

[

aD = aA + aD/A

]

[an = rω2]

and the acceleration diagram shown in fig. 9.54,

aA = 0.125× 202 = 50 m/s2 ←
(

aD/A

)

n
= 0.25× 12.52 = 39.0625 m/s2

(aD)n = 0.25× 7.52 = 14.0625 m/s2 ↑

Chulalongkorn University Phongsaen PITAKWATCHARA



9.6 Relative Acceleration 351

Figure 9.53: Example 9.27 ([3], pp. 392)

Figure 9.54: Solution to example 9.27

During constructing the acceleration diagram, it is acknowledged that

(

aD/A

)

t
⊥ AD and (aD)t ⊥ BD

of which their magnitudes can be determined from the lengths of the polygon as

39.0625× 3

5
−
(

aD/A

)

t
× 4

5
− 14.0625 = 0,

(

aD/A

)

t
= 11.72 m/s2

39.0625× 4

5
+
(

aD/A

)

t
× 3

5
+ (aD)t − 50 = 0, (aD)t = 11.72 m/s2

Hence,

[α = at/r]
αAD =

(

aD/A

)

t
/0.25 = 46.875 rad/s2 CCW

αBD = (aD)t /0.25 = 46.875 rad/s2 CW

Example 9.28 ([3], Prob. 5/156) Elements of the switching device are shown.
If the velocity v of the control rod is 0.9 m/s and is slowing down at the rate of
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6 m/s2 when θ = 60◦, determine the magnitude of the acceleration of C.

Solution: With the downward movement of the control rod, point A of
the mechanism here is constrained to be always in contact with the horizontal
surface. Therefore, direction of vA and aA are in horizontal. The other point B
has obvious motion in vertical direction since it is connected with the control
rod. See fig. 9.55.

Velocity analysis The configuration here suggests the use of ICZV for the
analysis. Since the motion of point A and B on the linkage ABC are known,
the ICZV point of ABC is the intersection of the perpendicular lines to their
velocity as depicted in fig. 9.55.

[ω = v/r] ωAB = 0.9
0.075 cos 30

= 13.856 rad/s CCW

Acceleration analysis The angular acceleration of link ABC can be deter-
mined from the acceleration relationship between point A and B as followed.
See also the acceleration diagram in fig. 9.56.

[

aA = aB + aA/B

]

With the vectors in the equation projected onto the vertical direction, the
following equation can be written:

6 + 14.4 sin 30−
(

aA/B

)

t
sin 60 = 0

With the vectors in the equation projected onto the horizontal direction, the
following equation can be written:

aA = 14.4 cos 30 +
(

aA/B

)

t
cos 60

Solving these two simultaneous equations,
(

aA/B

)

t
= 15.242 m/s2, aA = 20.09 m/s2

[α = at/r] αAB =
(

aA/B

)

t
/AB = 203.227 rad/s2 CW

Then, aC can be directly determined from the following relationship. See the
acceleration diagram in fig. 9.56.

[

aC = aB + aC/B

] (

aC/B

)

t
= 15.242 m/s2,

(

aC/B

)

n
= 14.4 m/s2

aC = (14.4 cos 30 + 15.242 cos 60) i + (6− 14.4 sin 30 + 15.242 sin 60) j

= 20.09i + 12.0j, aC = 23.4 m/s2
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Figure 9.55: Example 9.28 ([3], pp. 393)

Figure 9.56: Solution to example 9.28
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Example 9.29 ([4], Prob. 5/149) An oil pumping rig is shown in the figure.
The flexible pump rod D is fastened to the sector at E and is always vertical as
it enters the fitting below D. The link AB causes the beam BCE to oscillate as
the weighted crank OA revolves. If OA has a constant CW speed of 1 rev every
3 s, determine the acceleration of the pump rod D when the beam and the crank
OA are both in the horizontal position shown.

Solution: The flexible pump rod D and the sector E are connected such
that the motion of the sector in the tangential direction is imparted to the
rod entering and exiting vertically the hole tube. According to the motion
transmitted by the linkage OA, AB, and BC forming the four bar linkage
mechanism, the sector itself moves back and forth along the specific circular arc.
To determine the acceleration of the pumping rod, kinematic analysis along the
motion transmission from the crank OA should be perform starting from the
velocity-level analysis as follow.

Velocity analysis First, let us convert the unit of the angular velocity of
the crank OA.

ωOA =
1

3
rev/s =

2π

3
rad/s CW constant

At the position shown in fig. 9.57, the beam BCE and the crank OA are both
in the horizontal position, for which the velocity at A can be simply calculated
as

vA = ωOA × OA = 0.4π m/s ↑
In this case, ωAB and ωCE can be conveniently determined using the method

of ICZV. Since the direction of vA and vB are known, the location of the ICZV
point of the connecting rod AB is the intersection of the perpendicular lines to
those velocity as depicted in fig. 9.58. Of course the ICZV point of the beam
BCE is the fixed rotating point C. After calculating the exact coordinates of
the ICZV point,

[ω = v/r] ωAB = vA/10.1 = 0.04π rad/s CW

In turn, the angular velocity of the beam BCE is determined to be

ωCE =
vB√

0.92 + 32
=

ωAB × 9.92√
0.92 + 32

= 0.398 rad/s CW

Acceleration analysis The acceleration relationship across the rigid connecting
rod AB is

[

aB = aA + aB/A

]
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Figure 9.57: Example 9.29 ([4], pp. 382)

The acceleration polygon is sketched in fig. 9.58. Projecting all vectors onto
the horizontal direction, the following relation holds:

2.632− 0.046 cos 78.1−
(

aB/A

)

t
cos 11.9− (aB)t sin 16.7− 0.496 cos 16.7 = 0

Similarly, projecting all vectors onto the vertical direction, the following relation
holds:

−0.046 sin 78.1 +
(

aB/A

)

t
sin 11.9− (aB)t cos 16.7 + 0.496 sin 16.7 = 0

Solving these two simulatneous equations, the unknowns are determined.

(

aB/A

)

t
= 2.036 m/s2, (aB)t = 0.54 m/s2

Consequently, the acceleration of the pumping rod can now be readily determined:

[α = at/r] αCE =
(aB)t√
0.92+32

= 0.1724 rad/s2 CW

aD = (aE)t = 3.3× αCE = 0.569 m/s2 ↓

Example 9.30 ([3], Prob. 5/157) An intermitten-drive mechanism for perfo-
rated tape F consists of the link DAB driven by the crank OB. The trace
of the motion of the finger at D is shown by the dotted line. Determine the
acceleration of D at the instant shown when both OB and CA are horizontal if
OB has a constant CW rotational velocity of 120 rev/min.
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Figure 9.58: Solution to example 9.29
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Solution: From the given statement,

ωOB = 120× 2π

60
= 4π rad/s CW const

At this particular configuration, the velocity directions of A and B point
downward. Therefore, the ICZV is at inf. Consequently, linkage AB translates
downward with velocity

ωOB × OB = 0.628 m/s

and the angular velocity of AC is

ωAC =
vA

AC
= 5.0265 rad/s CW

To determine aD, the acceleration relationship between A and B is analyzed.
With this posture and from the velocity information, the total acceleration of B
is

aB =
v2

B

OB
= 7.896 m/s2 ←

Similarly, the normal acceleration of A is

(aA)n =
v2

A

AC
= 3.158 m/s2 ←

Since there is no rotation of link AB at this moment,
(

aA/B

)

n
= 0

Sketch the relative acceleration diagram and calculate the length of the
unknown sides by geometry analysis, we have

[

aA = aB + aA/B

] (

aA/B

)

t
= (7.896− 3.158) / cos 14.4775 = 4.893 m/s2

Hence,

αAB =

(

aA/B

)

t

AB
= 24.467 rad/s2 CW

Using the acceleration relationship between B and D to determine the accel-
eration at D. Since the link has no rotation at this moment,

(

aD/B

)

n
= 0

(

aD/B

)

t
= αAB × BD = 7.34 m/s2

[

aD = aB + aD/B

]

aD = (−7.896 + 7.34 cos 14.4775) i + (7.34 sin 14.4775) j

aD = −0.789i + 1.835j m/s2, aD = 1.997 m/s2
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Figure 9.59: Example 9.30 ([3], pp. 394)

Figure 9.60: Solution to example 9.30
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Figure 9.61: Motion relative to the rotating axes frame ([3], pp. 395)

9.7 Motion Relative to Rotating Axes

Up to this point in kinematics analysis, the relative velocity and acceleration,
namely vA/B and aA/B, are measured from the nonrotating reference axes. How-
ever, there are many situations where the motion is generated within or observed
from a system that itself is rotating. In these cases, the analysis is greatly facili-
tated by the use of the rotating reference axes. One example is the motion of the
fluid particle along the curved vane of a rotating pump. Absolute motion of the
particle may be thought as being constituted from the addition of the imparting
pure rotational motion of the pump blade and the relative motion of the particle
to the blade along the constrained curved vane that itself is rotating.

9.7.1 Relative Velocity

Consider two particles A and B moving independently in a plane as depicted in
fig. 9.61. Motion of A is observed from a moving reference frame x-y attached
to B, which is rotating with an angular velocity ω = θ̇. From the figure, the
positional vectors relationship can be written as

rA = rB + rA/B = rB + (xi + yj) (9.21)

It is evident that i and j are not constant since their directions change. Their
rate of changes with respect to time can be determined by investigating the
drawing of the unit vector i and j rotating by the angle of dθ for the elapsed time
of dt, shown in fig. 9.61. With the definition of the differentiation, the following
equations can be derived:

di

dt
= ω× i = ωj (9.22)

dj

dt
= ω× j = −ωi (9.23)
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Figure 9.62: Visualization of relative velocity equation using the virtual coinci-
dent point P ([3], pp. 396)

Differentiating eq. 9.21 with respect to time and making use of the above
relations, the following relative velocity relationship results:

ṙA = ṙB + ω× rA/B + (ẋi + ẏj)

vA = vB + ω× rA/B + vrel (9.24)

In this equation, velocity of A is observed from the moving reference frame
moving with B and rotating with the angular velocity ω. The meaning of each
term is as followed. vA is the velocity of the particle A and vB the velocity of the
particle B. An observer at B or at anywhere fixed to the rotating frame will see
A to move with the velocity vrel. This is contrast to vA/B which indicates the
velocity of A relative to B. vA/B can be viewed as the velocity of A seen from
the nonrotating frame moving with B. From eq. 9.24, the relative velocity is

vA/B = ω× rA/B + vrel

Therefore, ω× rA/B is the difference between the velocity of A observed from
the nonrotating and the rotating frame. In other words, it is the unconscious
relative velocity between the target and the observer caused by his rotational
motion.

If we use the nonrotating frame, there will be no ω×rA/B term. The equation
degenerates to eq. 7.30 explained in chapter 7. This makes vrel = vA/B, which
means the velocity seen by the observer is the velocity of A realtive to B. If
B coincides with A, rA/B = 0. This also causes vrel = vA/B, which means the
velocity seen by the observer is the velocity of A relative to B, even the observer
is rotating.
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Another way to comprehend the relative velocity equation using the rotating
frame is to visualize the situation shown in fig. 9.62. There are two particles A
and B which may be on different rigid bodies. Imagine there is a rotating plate
on which the particle B is situated. On this plate, imagine the virtual point P
currently coincident with A. As a result, the relationship between vP and vB is
indicated by

vP = vB + ω× rP/B = vB + ω× rA/B

Since point A is on the different body, vA 6= vP . From the above relation,
it can be concluded that the velocity of A as seen from P is vrel. In fact, the
observer at any location fixed to the rotating plane will see A to be moving
with the velocity vrel. For this particular illustration, the direction of vrel is
tangent to the path (slot) fixed in the rotating plate. That is, the virtual slot
is constructed to be coincided with the trajectory seen by the observer fixed to
the rotating plate. Note that it is not the absolute path of A (which must be
measured by the fixed observer).

From the illustration in fig. 9.62, the magnitude of vrel, or the relative speed,
is ṡ. Since P is the point fixed to the moving plate that is instantaneously
coincident with A, it can be concluded that vrel = vA/P . That is, the velocity of
A seen by the rotating observer B or P is the same, and it is equal to the velocity
of A relative to P . Be caution that it is not the same as the velocity of A relative
to B.

To summarize, observers moving with different velocities (different vB) on the
same rotating x-y frame see the target moving with the same velocity of vrel.
Observers moving with the same velocity, but are on different rotating x-y frames
(different ω), see the target moving with different velocity vrel. Non-rotating
observers will see the resultant of circular motion plus the relative velocity. The
following relative velocity equations summarize the relative motion of point A
and B from different point of views.

vA = vB + ω × r + vrel (9.25)

vA = vB + vA/B (9.26)

vA = vB + vP/B + vA/P (9.27)

vA = vP + vA/P (9.28)

9.7.2 Vector Differentiation

The change of a vector with respect to time as seen from a general reference frame
depends on the intrinsic change of the vector itself and the change of the vector
induced by the motion of the reference frame, whether it be the translation or
the rotation. Here, the interested frame is constrained not to translate, but to
rotate around its origin.
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Figure 9.63: Time rate of change of a vector V ([3], pp. 397)

An arbitrary vector V = Vxi + Vyj has the time derivative

(

dV

dt

)

XY
=

(

V̇xi + V̇yj
)

+
(

Vxi̇ + Vy j̇
)

(9.29)

(

dV

dt

)

XY
=

(

dV

dt

)

xy
+ ω ×V (9.30)

This expression means the time derivative of V measured in the fixed frame
(the total time derivative) is equal to the time derivative of V as measured in the
rotating frame plus the compensation due to rotation of the reference frame.

More insight can be seen from the vector diagram in fig. 9.63. Vector V
changes in both direction and magnitude to V

′

. In the figure, x-y frame changes
by rotating with the angular velocity ω while X-Y frame is fixed. During the
time interval dt, the observer in rotating x-y frame see the change in magnitude
of V, dV , plus the change in direction, V dβ, due to the relative rotation of V to
x-y. The change that the rotating observer recognized is called (dV)xy. What it
does not notice is the rotation of V induced by the rotation of x-y, V dθ. Imagine
that V is fixed to x-y. Therefore, its direction changes by the rotation of x-y
frame, which is not known to the observer rotating together.

This fundamental relationship can be used to derive the relative acceleration
equation from the relative velocity equation.

9.7.3 Relative Acceleration

The relative acceleration relationship may be obtained by directly differentiating
the relative velocity equation 9.24. Accordingly,

aA = aB + ω̇× rA/B + ω× ṙA/B + v̇rel
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With the use of eq. 9.30, the differentiation terms above can be further exemplified
as

ṙA/B = vrel + ω× rA/B (9.31)

v̇rel = arel + ω× vrel (9.32)

ω̇ =

(

dω

dt

)

xy
+ ω× ω

(

dω

dt

)

XY
=

(

dω

dt

)

xy
(9.33)

The last equation implies the angular acceleration seen in the rotating frame
is the absolute angular acceleration because the vector of the angular velocity
aligns with the angular velocity of the observing frame. Substituting these terms
into the acceleration relationship, the relative acceleration equation employing
the rotating frame results:

aA = aB + ω̇× rA/B + ω×
(

ω× rA/B

)

+ 2ω× vrel + arel (9.34)

In this equation, the acceleration of A is observed from the moving reference
frame moving with B and rotating with the angular velocity and acceleration of
ω and ω̇. The meaning of each term is as followed. aA and aB are the acceleration
of the particle A and B, respectively. An observer at B or at anywhere fixed to
the rotating frame will see A to move with the acceleration arel. This is contrast
to aA/B which indicates the acceleration of A relative to B. aA/B can be viewed
as the acceleration of A seen from the nonrotating frame moving with B. From
eq. 9.34, the relative acceleration is

aA/B = ω̇× rA/B + ω×
(

ω× rA/B

)

+ 2ω× vrel + arel

Therefore, ω̇× rA/B + ω×
(

ω× rA/B

)

+ 2ω× vrel is the difference between
the acceleration of A observed from the nonrotating and the rotating frame. It is
the unconscious relative acceleration between the target and the observer caused
by his rotational motion. For the nonrotating frame, the equation degenerates
to eq. 7.32 explained in chapter 7. This makes arel = aA/B, which means the
acceleration seen by the observer is the acceleration of A relative to B. If B
coincides with A, rA/B = 0. This makes arel = aA/B − 2ω× vrel, indicating that
the acceleration seen by the rotating observer may not be the relative acceleration
of A relative to B, even they are coincident. Note that arel 6= v̇rel.

Another way to comprehend the relative acceleration equation using the rotat-
ing frame is to visualize the situation shown in fig. 9.64. There are two particles
A and B which may be on different rigid bodies. Imagine there is a rotating
plate on which the particle B is situated. On this plate, imagine the virtual point
P currently coincident with A. Therefore, P is seen to perform circular motion
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Figure 9.64: Visualization of relative acceleration equation using the virtual co-
incident point P ([3], pp. 398)

about the nonrotating observer at B. As a result, the relationship between aP

and aB is determined by

aP = aB + ω̇× rA/B + ω×
(

ω× rA/B

)

Since point A is on the different body, aA 6= aP . Unlike the velocity, however,
the acceleration difference aA − aP is not the acceleration of A seen from P .
The velocity of A as seen from P , vrel, changes due to the vector itself (arel)
and due to the induced motion of the rotating frame (ω× vrel). If the observer
is on the frame rotating with the rigid body, he will not be able to observe the
induced motion. In other words, any observer in the rotating frame will see point
A moving with the acceleration arel. Generally, arel has components in both the
normal and tangential directions to the path (slot) fixed in the rotating plate,
for the virtual slot is constructed to be coincided with the trajectory seen by the
observer fixed in the rotating plate. Note that it is not the absolute path of A
(which must be measured by the fixed observer).

One might tempt to think that, apart from the centrifugal and the tangential
accelerations of the coincident virtual point P , ω× vrel is the acceleration the
rotating observer does not perceive. This is incorrect, though. Change of the
relative position vector, rA/B, itself, denoted by vrel, accounts for the other
unobservable acceleration ω× vrel. Combining these two terms results in the
Coriolis acceleration 2ω× vrel, named after the scientist name who discovered
this missing acceleration. For the Coriolis acceleration to exist, both ω and
vrel must be nonzero. In particular, particle A must be moving on the rotating
platform.

From the illustration in fig. 9.64, arel is the acceleration required to move
along the relative path (slot). Had the path been known, the n-t coordinate
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system is the most suitable description. Accordingly, arel can be decomposed
into the normal and the tangent direction for which

(

arel
)

t
= s̈

(

arel
)

n
= v2

rel/ρ

In summary, arel is the change of vrel observed from any location in the
rotating frame. This is the acceleration of A seen by any rotating observer. It is
not equal to v̇rel

(

= ω× vrel + arel
)

which is just the change of vrel observed in
the nonrotating frame. Also, it is not equal to aA/P

(

= 2ω× vrel + arel
)

which is
the acceleration of A seen by the coincident point P in the nonrotating frame. If
the observer is not coincident to A, he will see the resultant of normal, tangential
(portion of the relative motion which makes up the relative circular motion),
Coriolis, and relative acceleration (the rest of the relative motion by virtual slot
on the rotating frame). The following relative acceleration equations summarize
the relative motion of point A and B from different point of views.

aA = aB + ω̇× rA/B + ω×
(

ω× rA/B

)

+ 2ω× vrel + arel (9.35)

aA = aB + aA/B (9.36)

aA = aB + aP/B + aA/P (9.37)

aA = aP + aA/P (9.38)

Example 9.31 ([3], Prob. 5/183) The crank OA revolves clockwise with a
constant angular velocity of 10 rad/s within a limited arc of its motion. For the
position θ = 30◦, determine the angular velocity of the slotted link CB and the
acceleration of A as measured relative to the slot in CB.

Solution: Typically, the velocity information must be evaluated before cal-
culating the acceleration because of the appearance of the velocity terms in the
acceleration equation. Motion of the crank OA is transmitted to the slot CB
through the pin A. Therefore, the following relative velocity equation is set up
with the helpful velocity diagram shown in fig. 9.66:

[

vA = vP + vA/P

]

From the given data, vA = 0.2 × 10 = 2 m/s. Completing the velocity
diagram in fig. 9.66, the pertinent velocities can be determined as

vP = 2 cos 30 = 2× 0.2 cos 30× ωCB, ωCB = 5 rad/s CW

vA/P = vrel = 2 sin 30 = 1 m/s
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Figure 9.65: Example 9.31 ([3], pp. 410)

Similarly, apply the relative acceleration equation between the point A on
the crank and the fixed point C on the slot linkage. If the observer is at C and
is rotating along with the slot, he would see A to be moving along the straight
slot. Therefore,

[

aA = aC + ωCB× ωCB× rA/C + ω̇CB× rA/C + 2ωCB× vrel + arel
]

From the velocity analysis,

∣

∣

ωCB× ωCB× rA/C

∣

∣ = 8.66 m/s2

∣

∣2ωCB× vrel
∣

∣ = 10 m/s2

aA = v2
A/OA = 20 m/s2

Construct the acceleration diagram as depicted in fig. 9.66 and perform the geo-
metrical analysis, the remaining acceleration can be determined.

arel = 20 cos 30− 8.66 = 8.66 m/s2 along the slot towards C

∣

∣

ω̇CB× rA/C

∣

∣ = 20 cos 60− 10 = 0, ω̇CB = 0 rad/s2

Example 9.32 ([4], Prob. 5/175) Determine the angular acceleration α2 of
wheel C for the instant when θ = 20◦. Wheel A has a constant clockwise angular
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Figure 9.66: Solution to example 9.31
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velocity of 2 rad/s.

Solution: Motion of the wheel A is transmitted to the wheel C of the
Geneva intermitten mechanism through the pin P and the slots. Therefore the
relative motion equations should be set so that the motion of the coincident
points on the wheel A and C are involved.

Geometry analysis First, the geometric parameters at this instant are de-
termined. Consider the triangle O1PO2 when θ = 20◦ shown in fig. 9.68.

tanα =

200√
2

sin 20

200− 200√
2

cos 20
, α = 35.78◦

PO2
2

=

(

200√
2

sin 20

)2

+

(

200− 200√
2

cos 20

)2

, PO2 = 82.7 mm

Velocity analysis Next, the velocity relationship of the pin-coincident points A
on the wheel A and P on the wheel C is formulated.

[

vA = vP + vrel
]

Since point A and P move on the circular path,

vA = 2× 0.2/
√

2 = 0.283 m/s

Draw the velocity diagram and perform the geometrical analysis to unveil vP and
vrel.

vP = vA cos 55.78 = 0.159 = ω2 × 0.0827, ω2 = 1.923 rad/s CCW

vrel = vA/P = vA sin 55.78 = 0.234 m/s

Acceleration analysis Now there are enough information to perform the acceler-
ation analysis. The acceleration of point A observed from the person at O2 with
the eyesight rotating with the wheel C abides by the following equation:

[

aA = aO2
+ ω2× ω2× rA/O + ω̇2× rA/O + 2ω2× vrel + arel

]

Since the path of A seen on the rotating wheel C is along the slot, the
direction of arel is parallel to the slot. Considering the unknowns in the above
equation, they are the magnitudes of ω̇2× rA/O and arel for the two scalar
equations to solve. See the acceleration diagram in fig. 9.68. The magnitudes of
the known terms are

aO2
= 2× 2× 0.2/

√
2 = 0.5656 m/s2
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Figure 9.67: Example 9.32 ([4], pp. 397)

∣

∣

ω2× ω2× rA/O

∣

∣ = 0.306 m/s2

∣

∣2ω2× vrel
∣

∣ = 0.9 m/s2

recognizing the fact that point A is moving on the circular path at constant
angular velocity.

With the acceleration diagram, projecting the sides of the vector polygon onto
the ω̇2× rA/O direction, the following relationship can be written:

∣

∣

ω̇2× rA/O

∣

∣ = 0.9 + 0.5656 cos 34.22

Therefore the angular acceleration of the wheel C is

ω̇2 =
∣

∣

ω̇2× rA/O

∣

∣ /
∣

∣rA/O

∣

∣ = 16.54 rad/s2 CCW

Example 9.33 ([3], Prob. 5/186) The space shuttle A is in an equilateral
circular orbit of 240 km altitude and is moving from west to east. Determine
the velocity and acceleration which it appears to have to an observer B fixed to
and rotating with the earth at the equator as the shuttle passed overhead. Use
R = 6378 km for the radius of the earth. Also use Fig. 1/1 for the appropriate
value of g and carry out your calculation to 4-figure accuracy.
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Figure 9.68: Solution to example 9.32
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Solution: The observer B is on the rotating earth which leads us to apply
the motion equations relative to the rotating axes. Motion of the space shuttle
and the observer are then related as follow:

[

vA = vB + ωe× rA/B + vrel
]

From the appendix and assuming the axis of the rotation of the earth is normal
to the equilateral plane, ωe = 0.7292× 10−4 rad/s constant CCW. Therefore,

vB = ωe× 6378× 103 = 465.084 m/s ←

To determine the velocity of the space shuttle, recall the circular-orbit shuttle
has the normal acceleration towards the center of the earth of which its value is

(aA)n = g

(

R

R + h

)2

=
v2

A

R + h

Consulting the appendix for the accurate value of the gravitational constant,
g = 9.814 m/s2. Thus

vA = 7766.79 m/s ←
Applying the relative velocity equation above, the velocity seen by the ob-

server B, vrel, can now be determined.

−7766.79i = −465.084i− 0.7292× 10−4 × 240× 103 + vrel

vrel = 7284.205 m/s = 26223 km/h ←
Consequently, the acceleration of the space shuttle seen by the observer can

be determined from the acceleration equation relative to the rotating axes as

[

aA = aB + ωe× ωe× rA/B + ω̇e× rA/B + 2ωe× vrel + arel
]

Let us first count the unknowns in the equation. From the velocity analysis,
(aA)n has been determined. However, the magnitude of (aA)t is the unknown.
The other unknown is the acceleration seen by the observer, arel. Hence there
are three scalar unknowns in this two-dimensional vector equation for which not
all of them may be solved.

Assume that the shuttle orbits with the constant velocity magnitude, (aA)t =
0 and so aA = (aA)n. As a result, only arel provides two scalar unknowns which
can be solved from the equation. Computing the values of each term in the
acceleration equation,

−9.81

(

6378

6378 + 240

)2

j = −
(

0.7292× 10−4
)2 × 6378× 103j

−
(

0.7292× 10−4
)2 × 240× 103j− 2× 0.7292× 10−4 × 7284.205j + arel
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Figure 9.69: Example 9.33 ([3], pp. 410)

Here the angular velocity of the earth is presumed to be constant as well which
makes aB = (aB)n. Solving the equation for the acceleration of the space shuttle
seen by the observer B,

arel = 8.018 m/s2 ↓

Example 9.34 ([3], Prob. 5/179) The figure shows the vanes of a centrifugal
pump impeller which turns with a constant clockwise speed of 200 rev/min. The
fluid particles are observed to have an absolute velocity whose component in the
r-direction is 3 m/s at discharge from the vane. Furthermore, the magnitude of
the velocity of the particles measured relative to the vane is increasing at the
rate of 24 m/s2 just before they leave the vane. Determine the magnitude of the
total acceleration of a fluid particle an instant before it leaves the impeller. The
radius of curvature ρ of the vane at its end is 200 mm.

Solution: Let the observer P rotating with the impeller be coincident to
the fluid particles about to leave the vane at this instant. The velocity of the
fluid particles seen by this observer is determined by the following relationship;

Velocity analysis

[

vA = vP + ω× rA/P + vrel
]

With the help of the velocity diagram shown in fig. 9.71 and expressing the
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Figure 9.70: Example 9.34 ([3], pp. 409)

vector quantities in r-θ coordinates, the equation can be written specifically as

(vA)θ eθ + 3er = 200× 2π

60
× 0.15eθ + vrel (cos 45er − sin 45eθ)

Consequently,

vrel = 3
√

2 m/s and (vA)θ = (π − 3) m/s

Acceleration analysis Absolute acceleration of the fluid particles can be readily
determined from the observer acceleration and the apparent acceleration as
follow.

[

aA = aP + ω× ω× rA/P + ω̇× rA/P + 2ω× vrel + arel
]

aA = −0.15×
(

20π

3

)2

er + 2× 20π

3
× 3
√

2 (cos 45er + sin 45eθ)

+24 (cos 45er − sin 45eθ) +

(

3
√

2
)2

0.2
(− cos 45er − sin 45eθ)

= 13.187er + 45.04eθ

aA = 46.93 m/s2

Example 9.35 ([4], Prob. 5/176) The mechanism shown is a device to
produce high torque in the shaft at O. The gear unit, pivoted at C, turns the
right-handed screw at a constant speed N = 100 rev/min in the direction shown
which advances the threaded collar at A along the screw toward C. Determine
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Figure 9.71: Solution to example 9.34

the time rate of change ω̇AO of the angular velocity of AO as it passes the
vertical position shown. The screw has 3 single threads per centimeter of length.

Solution: Rotation of the screw causes the relative translation of the col-
lar A. With the given thread specification, three turns advances the collar by
1 cm. Let A be the point on the collar and P be the coincident point on the
screw. Since the screw rotates at a constant speed 100 rev/min,

vA/P =
100

3
cm/min =

1

180
m/s

in the direction along the screw towards C.

Velocity analysis Using the velocity relationship and the velocity diagram
in fig. 9.73, the absolute velocity of the collar and the links’ angular velocities
can be determined.

[

vA = vP + vrel
]

vA =
1/180

cos 29.745
= ωOA× 0.2, ωOA = 0.032 rad/s CCW

vP = vrel tan 29.745 = 0.0032 m/s, ωPC = vP /CP = 0.00788 rad/s CCW

Acceleration analysis Establishing the acceleration relationship between the point
A and P and acknowledging that

rA/P = 0,

the kinematical relationship simplifies to
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Figure 9.72: Example 9.35 ([4], pp. 398)

Figure 9.73: Solution to example 9.35
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[

aA = aP + 2ωPC× vrel + arel
]

The corresponding acceleration diagram is drawn in fig. 9.73. For this case,
arel = 0 because the screw turns at a constant rate. The centrifugal acceleration
component of aA and aP can be calculated as

[an = rω2] (aA)n = 0.2× ω2
OA = 204.8× 10−6 m/s2

(aP )n = AC × ω2
PC = 25.41× 10−6 m/s2

From the velocity analysis, the Coriolis acceleration is

∣

∣2ωPC× vrel
∣

∣ = 87.556× 10−6 m/s2

To determine the unknown tangential acceleration component of aA and aP ,
the closed loop acceleration polygon are projected onto the horizontal and the
vertical direction. In the vertical direction,

204.8×10−6 = 25.41×10−6 sin 29.745◦+87.556×10−6 cos 29.745◦+(aP )t cos 29.745◦

(aP )t = 133.8× 10−6 m/s2

In the horizontal direction,

(aA)t = ω̇OA×0.2 = −25.41×10−6 cos 29.745◦+(87.556 + 133.8)×10−6 sin 29.745◦

ω̇OA = 438.8× 10−6 rad/s CW

Example 9.36 ([3], Prob. 5/185) Determine the angular acceleration of link
EC in the position shown, where ω = β̇ = 2 rad/s and β̈ = 6rad/s2 when
θ = β = 60◦. Pin A is fixed to link EC. The circular slot in link DO has a
radius of curvature of 150 mm. In the position shown, the tangent to the slot at
the point of contact is parallel to AO.

Solution: Let P be the virtual point on the link OD that is coincident
with the pin A. Therefore

rA/P = 0

Velocity analysis With the current geometry of the mechanism, the velocity
relationship and its diagram (fig. 9.75) of point A and P can be determined as

[

vA = vP + vrel
]
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Figure 9.74: Example 9.36 ([3], pp. 410)

where, from the diagram,

vP = 2× 0.15 = 0.3 m/s

vrel = vP tan 60◦ = 0.5196 m/s

vA = vP / cos 60◦ = 0.6 m/s

Hence,
ωAC = vA/AC = 0.6/0.15 = 4 rad/s CW

Acceleration analysis The acceleration relationship and its diagram, shown in
fig. 9.75, can be established.

[

aA = aP + 2ωOA× vrel + arel
]

From the acceleration diagram, two unknowns are (aA)t and
(

arel
)

t
. Since

the problem asks the angular acceleration of link EC, αEC , only (aA)t is needed
to be determined. Consider projecting the polygon onto the direction normal to
(

arel
)

t
so its projection will be null, the following equation can be formulated:

(aA)t cos 60◦ + 2.4 cos 30◦ + 0.9 = 2.0784 + 1.8

[at = rα] (aA)t = 1.8 = 0.15αEC

αEC = 12 rad/s2 CCW
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Figure 9.75: Solution to example 9.36
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